Skip to main content
Log in

Dimension of the Gibbs function topological manifold: 2. Thermodynamically stable binary quasicrystals: Reality or artefact?

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 01 January 2015

Abstract

In complex systems with at least three independent components, one-phase normal states may transform into exotic states. The former are represented by a non-branching tree, while the latter are represented by a branching tree. The transformation takes place through a non-congruent two-phase equilibrium. Until recently, researchers using this process were able to obtain stable quasicrystals with three, four, or more components. It therefore seemed justified to suppose that exotic states constituted quasicrystals. In 2000, however, Tsai’s team discovered two stable binary quasicrystals formed through a congruent process. Virtually no reports on other stable binary quasicrystals have been obtained since that discovery despite considerable effort on the part of researchers. The graph-based representation of equilibrium states rules out the existence of exotic one-phase equilibria (i.e., stable quasicrystals) in binary systems. A question arises: What types of systems did Tsai discover?.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J. Turulski, J. Math. Chem. doi:10.1007/s10910-014-0439-5

  2. D. Shechtman, I. Blech, D. Gratias, J. Cahn, Phys. Rev. Lett. 53, 1951 (1984)

    Article  CAS  Google Scholar 

  3. I.P. Tsai, A. Inoue, T. Masumoto, J. Mater. Sci. Lett. 6, 1403 (1987)

    Article  CAS  Google Scholar 

  4. I.P. Tsai, A. Inoue, T. Masumoto, Jpn. J. Appl. Phys. 27, 1587 (1988)

    Article  Google Scholar 

  5. A.P. Tsai, MRS Bull. 22, 40 (1997)

    Article  Google Scholar 

  6. A.P. Tsai, Acc. Chem. Res. 36, 31 (2003)

    Article  CAS  Google Scholar 

  7. P. Gille, B. Bauer, M. Hahne, A. Smontara, J. Dolinsek, J. Cryst. Growth 318, 1016 (2011)

    Article  CAS  Google Scholar 

  8. R. Popescu, A. Jianu, M. Manciu, R. Nicula, R. Manaila, J. Alloys Compd. 221, 240 (1995)

    Article  CAS  Google Scholar 

  9. S. Katrych, Th Weber, M. Kobas, L. Massuger, L. Palatinus, G. Chapuis, W. Steurer, J. Alloys Compd. 428, 164 (2007)

    Article  CAS  Google Scholar 

  10. L. Barbier, D. Gratias, Prog. Surf. Sci. 75, 177 (2005)

    Article  Google Scholar 

  11. H.K. Lee, R.H. Swendsen, M. Widom, Phys. Rev. B 64, 224201 (2001)

    Article  Google Scholar 

  12. H.M. Cataldo, C.F. Tejero, Phys. Rev. B 52, 13269 (1995)

    Article  CAS  Google Scholar 

  13. H.M. Cataldo, Philos. Mag. B 79, 1603 (1999)

    Article  CAS  Google Scholar 

  14. A.P. Tsai, J.Q. Guo, E. Abe, H. Takakura, T.J. Sato, Nature 408, 537 (2000)

    Article  CAS  Google Scholar 

  15. A.I. Goldman, A. Kreyssig, S. Nandi, M.G. Kim, M.L. Caudle, P.C. Canfield, Philos. Mag. 91, 2427 (2011)

    Article  CAS  Google Scholar 

  16. W. Steurer, in Ninth International Conference on Quasicrystals, Stable clusters in quasicrystals - fact or fiction? Ames (2005)

  17. Marc de Boissieu, in Ninth International Conference on Quasicrystals, Stability of Quasicrystals: Energy, Entropy, and Phason Modes. Ames University, Ames (2005)

  18. Ch. Henley, in Ninth International Conference on Quasicrystals, Clusters, Phason Elasticity, and Entropic Stabilization: A Theory Perspective. Ames (2005)

  19. J. Emsley, The Elements, 2nd edn. (Clarendon Press, Oxford, 1991)

    Google Scholar 

  20. A.I. Goldman, T. Kong, A. Kreyssig, A. Jesche, M. Ramazanoglu, K.W. Dennis, S.L. Bud’ko, P.C. Canfield, Nat. Mater. 12, 714 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Turulski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turulski, J. Dimension of the Gibbs function topological manifold: 2. Thermodynamically stable binary quasicrystals: Reality or artefact?. J Math Chem 53, 517–526 (2015). https://doi.org/10.1007/s10910-014-0438-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-014-0438-6

Keywords

Mathematics Subject Classification

Navigation