Skip to main content
Log in

A New TV-Stokes Model with Augmented Lagrangian Method for Image Denoising and Deconvolution

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Recently, TV-Stokes model has been widely researched for various image processing tasks such as denoising and inpainting. In this paper, we introduce a new TV-Stokes model for image deconvolution, and propose fast and efficient iterative algorithms based on the augmented Lagrangian method. The new TV-Stokes model is a two-step model: in the first step, a smoothed and divergence free tangential field of the observed image is recovered based on total variation (TV) minimization and a new data fidelity term; in the second step, the image is reconstructed by minimizing the distance between the unit image gradient and the regularized unit normal direction. Numerical experiments demonstrate that the proposed model has the potential to outperform popular TV-based restoration methods in preserving texture details and fine structures. As a result, an improvement in signal-to-noise ratio (SNR) is obtained for deconvolution and denoising results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rudin, L., Osher, S.: Total variation based image restoration with free local constraints. In: Proceedings of 1st IEEE Int. Conf. on Image Process., Austin, pp. 31–35 (1994)

    Chapter  Google Scholar 

  2. Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chan, T.F., Esedoglu, S., Park, F., Yip, A.: Recent developments in total variation image restoration. In: The Handbook of Mathematical Models in Computer Vision. Springer, Berlin (2005)

    Google Scholar 

  4. Chen, D.Q., Zhang, H., Cheng, L.Z.: A fast fixed point algorithm for total variation deblurring and segmentation. J. Math. Imag. Vis., 2011. doi:10.1007/s10851-011-0298-7, in press, published online (25 May 2011)

  5. Lou, Y., Zhang, X., Osher, S., Bertozzi, A.: Image recovery via nonlocal operators. J. Sci. Comput. 42(2), 185–197 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Durand, S., Nikolova, M.: Denoising of frame coefficients using l1 data fidelity term and edge preserving regularization. Multiscale Model. Simul. 6(2), 547–576 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chan, T.F., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lysaker, M., Lundervold, A., Tai, X.-C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003)

    Article  Google Scholar 

  9. Li, F., Shen, C., Fan, J., Shen, C.: Image restoration combining a total variational filter and a fourth-order filter. J. Vis. Commun. Image Represent. 18(4), 322–330 (2007)

    Article  Google Scholar 

  10. Liu, Q., Yao, Z., Ke, Y.: Entropy solutions for a fourth-order nonlinear degenerate problem for noise removal. Nonlinear Anal. 67(6), 1908–1918 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lysaker, M., Osher, S., Tai, X.-C.: Noise removal using smoothed normals and surface fitting. IEEE Trans. Image Process. 13(10), 1345–1357 (2004)

    Article  MathSciNet  Google Scholar 

  12. Rahman, T., Tai, X.-C., Osher, S.: A TV-Stokes denoising algorithm. In: Scale Space and Variational Methods in Computer Vision, pp. 473–482. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Tai, X.-C., Osher, S., Holm, R.: Image inpainting using TV-Stokes equation. In: Image Processing Based on Partial Differential Equations, pp. 3–22. Springer, Heidelberg (2006)

    Google Scholar 

  14. Litvinov, W.G., Rahman, T., Tai, X.-C.: A modified TV-Stokes model for image processing. SIAM J. Sci. Comput. 33(4), 1574–1597 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tai, X.-C., Borok, S., Hahn, J.: Image denoising using TV-Stokes equation with an orientation-matching minimization. In: International Conference on Scale Space and Variational Methods in Computer Vision, Voss, Norway, pp. 490–501 (2009)

    Chapter  Google Scholar 

  16. Ohtake, Y., Belyaev, A., Bogaevski, I.: Mesh regularization and adaptive smoothing. Comput. Aided Des. 33(11), 789–800 (2001)

    Article  Google Scholar 

  17. Wu, T.-P., Sun, S., Tang, C.-K., Shum, H.-Y.: Interactive normal reconstruction from a single image. ACM Trans. Graph. 27(5), 119 (2008)

    Article  Google Scholar 

  18. Basri, R., Jacobs, D., Kemelmacher, I.: Photometric stereo with general unknown lighting. Int. J. Comput. Vis. 72(3), 239–257 (2007)

    Article  Google Scholar 

  19. Hahn, J., Wu, C., Tai, X.-C.: Augmented Lagrangian method for generalized TV-Stokes. J. Sci. Comput., 2011. doi:10.1007/s10915-011-9482-6, in press, published online (16 April 2011)

  20. Hahn, J., Sofia, B., Tai, X.-C., Bruckstein, A.M.: Orientation-matching minimization for image denoising and inpainting. Int. J. Comput. Vis. 92(3), 308–324 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Candes, E.J., Wakin, M., Boyd, S.: Enhancing sparsity by reweighted l1 minimization. J. Fourier Anal. Appl. 14(5), 877–905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dong, F., Liu, Z., Kong, D., Liu, K.: An improved LOT model for image restoration. J. Math. Imaging Vis. 34(1), 89–97 (2009)

    Article  MathSciNet  Google Scholar 

  23. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press, New York (2004)

    MATH  Google Scholar 

  24. Combettes, P., Wajs, V.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu, C., Tai, X.-C.: Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3(3), 300–339 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wu, C., Zhang, J., Tai, X.-C.: Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Probl. Theor. Imaging 5(1), 237–261 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Afonso, M.V., Bioucas-Dias, J., Figueiredo, M.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(9), 2345–2356 (2010)

    Article  MathSciNet  Google Scholar 

  28. Chen, D.Q., Cheng, L.Z., Su, F.: Restoration of images based on subspace optimization accelerating augmented Lagrangian approach. J. Comput. Appl. Math. 235(8), 2766–2774 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Combettes, P.L., Pesquet, J.C.: A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J. Sel. Top. Signal Process. 1(4), 564–574 (2007)

    Article  Google Scholar 

  30. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for TV minimization. SIAM J. Imag. Sci. 3(4), 1015–1046 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, X., Burger, M., Osher, S.: A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46(1), 20–46 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  33. Takeda, H., Farsiu, S., Milanfar, P.: Kernel regression for image processing and reconstruction. IEEE Trans. Image Process. 16(2), 349–366 (2007)

    Article  MathSciNet  Google Scholar 

  34. Takeda, H., Farsiu, S., Milanfar, P.: Deblurring using regularized locally adaptive kernel regression. IEEE Trans. Image Process. 17(4), 550–563 (2008)

    Article  MathSciNet  Google Scholar 

  35. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  36. Dabov, K., Foi, A., Egiazarian, K.: Image restoration by sparse 3D transform-domain collaborative filtering. In: Proc. SPIE Electronic Imaging, vol. 6812-07 (2008)

    Google Scholar 

  37. Chen, D., Cheng, L.: Alternative minimisation algorithm for non-local total variational image deblurring. IET Image Process. 4(5), 353–364 (2010)

    Article  Google Scholar 

  38. Buades, A., Coll, B., Morel, J.-M.: On image denoising methods. SIAM Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Goossens, B., Luong, H.Q., Pizurica, A., Philips, W.: An improved non-local means algorithm for image denoising. In: International Workshop on Local and Non-Local Approximation in Image Processing (LNLA2008), Lausanne, Switzerland, (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai-Qiang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, DQ., Cheng, LZ. & Su, F. A New TV-Stokes Model with Augmented Lagrangian Method for Image Denoising and Deconvolution. J Sci Comput 51, 505–526 (2012). https://doi.org/10.1007/s10915-011-9519-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9519-x

Keywords

Navigation