Skip to main content
Log in

Hydrodynamics in Porous Media: A Finite Volume Lattice Boltzmann Study

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Fluid flow through porous media is of great importance for many natural systems, such as transport of groundwater flow, pollution transport and mineral processing. In this paper, we propose and validate a novel finite volume formulation of the lattice Boltzmann method for porous flows, based on the Brinkman–Forchheimer equation. The porous media effect is incorporated as a force term in the lattice Boltzmann equation, which is numerically solved through a cell-centered finite volume scheme. Correction factors are introduced to improve the numerical stability. The method is tested against fully porous Poiseuille, Couette and lid-driven cavity flows. Upon comparing the results with well-documented data available in literature, a satisfactory agreement is observed. The method is then applied to simulate the flow in partially porous channels, in order to verify its potential application to fractured porous conduits, and assess the influence of the main porous media parameters, such as Darcy number, porosity and porous media thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Satuffer, F.: Groundwater I. ETH University Press, Zurich (2011)

  2. Arora, K.R.: Soil Mechanics and Foundation Engineering. Standard Publishers Distributors, Delhi (2009)

  3. Narvaez, A., Yazdchi, K., Luding, S., Harting, J.: From creeping to inertial flow in porous media: a lattice Boltzmann finite-element study. J. Stat. Mech-Theory E. P02038 (2013)

  4. Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particle. Appl. Sci. Res. A1, 27–34 (1974)

    Google Scholar 

  5. Joodi, A.S., Sizaret, S., Binet, S., Bruand, A., Alberic, P., Lepiller, M.: Development of a Darcy-Brinkman model to simulate water flow and tracer transport in a heterogeneous karstic aquifer. Hydrogeol. J. 18, 295–309 (2010)

    Article  Google Scholar 

  6. Liu, H., Patil, P.R., Narusawa, U.: On Darcy-Brinkman equation: viscous flow between two parallel plates packed with regular square arrays of cylinders. Entropy 9, 118–131 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Rao, P.R.M., Venkataraman, P.: Validation of Forchheimer’s law for flow through porous media with converging boundaries. J. Hydraul. Eng. 126, 63–71 (2000)

    Article  Google Scholar 

  8. Montillet, A.: Flow through a finite packed bed of spheres: a note on the limit of applicability of the Forchheimer-type equation. J. Fluids Eng. 126, 139–143 (2004)

    Article  Google Scholar 

  9. Pan, H., Rui, H.: Mixed element method for two-dimensional Darcy-Forchheimer model. J. Sci. Comput. 52, 563–587 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Whitaker, S.: The Forchheimer equation: a theoretical development. Transp. Porous Med. 25, 27–61 (1996)

    Article  Google Scholar 

  11. Vafai, K., Tien, C.L.: Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Mass Transf. 24, 195–203 (1981)

    Article  MATH  Google Scholar 

  12. Guo, Z., Zhao, T.S.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66, 036304 (2002)

    Article  Google Scholar 

  13. Hamdan, M.O., Al-Nimr, M.A., Alkam, M.K.: Enhancing forced convection by inserting porous substrate in the core of a parallel-plate channel. Int. J. Numer. Method H. 10, 502–517 (2000)

    Google Scholar 

  14. Alkam, M.K., Al-Nimr, M.A.: Transient non-Darcian forced convection flow in a pipe partially filled with a porous material. Int. J. Heat Mass Transf. 41, 347–356 (1998)

    Article  MATH  Google Scholar 

  15. Sukop, M.C., Thorne, D.T.: Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers. Springer, Berlin (2006)

  16. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  17. Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145–197 (1992)

    Article  Google Scholar 

  18. Martys, N., Chen, H.: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys. Rev. E 53, 743–750 (1996)

    Article  Google Scholar 

  19. Shan, X., Chen, H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47, 1815–1819 (1993)

    Article  Google Scholar 

  20. Artoli, A., Hoekstra, A., Sloot, P.: Mesoscopic simulations of systolic flow in the Human abdominal aorta. J. Biomech. 39, 873–884 (2006)

    Article  Google Scholar 

  21. Shan, X., Yuan, X.F., Chen, H.: Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation. J. Fluid Mech. 550, 413–441 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Biscarini, C., Di Francesco, S., Mencattini, M.: Application of the lattice Boltzmann method for large-scale hydraulic problems. Int. J. Numer. Method H. 21, 584–601 (2011)

    Google Scholar 

  23. Falcucci, G., Ubertini, S., Biscarini, C., Di Francesco, S., Chiappini, D., Palpacelli, S., De Maio, A., Succi, S.: Lattice Boltzmann methods for multiphase flow simulations across scales. Commun. Comput. Phys. 9, 269–296 (2011)

    Google Scholar 

  24. Falcucci, G., Ubertini, S., Succi, S.: Lattice Boltzmann simulations of phase-separating flows at large density ratios: the case of doubly-attractive pseudo-potentials. Soft Matter 6, 4357–4365 (2010)

    Article  Google Scholar 

  25. Succi, S., Foti, E., Higuera, F.: Three-dimensional flows in complex geometries with the lattice Boltzmann method. Europhys. Lett. 10, 433–438 (1989)

    Article  Google Scholar 

  26. Cancelliere, A., Chang, C., Foti, E., Rothman, D.H., Succi, S.: The permeability of a random medium: comparison of simulation with theory. Phys. Fluids A 2, 2085–2089 (1990)

    Article  Google Scholar 

  27. Sukop, M.C., Huang, H., Lin, C.L., Deo, M.D., Oh, K., Miller, J.D.: Distribution of multiphase fluids in porous media: comparison between lattice Boltzmann modeling and micro-x-ray tomography. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 77, 026710 (2008)

    Article  Google Scholar 

  28. Parmigiani, A., Huber, C., Bachmann, O., Chopard, B.: Pore-scale mass and reactant transport in multiphase porous media flows. J. Fluid Mech. 686, 40–76 (2011)

    Article  MATH  Google Scholar 

  29. Prasianakis, N.I., Rosén, T., Kang, J., Eller, J., Mantzaras, J., Büchi, F.N.: Simulation of 3D porous media flows with application to polymer electrolyte fuel cells. Commun. Comput. Phys. 13, 851–866 (2013)

    Google Scholar 

  30. Kang, Q., Zhang, D., Chen, S.: Unified lattice Boltzmann method for flow in multi-scale porous media. Phys. Rev. E 66, 056307 (2002)

    Article  Google Scholar 

  31. Anwar, S., Sukop, M.C.: Regional scale transient groundwater flow modeling using lattice Boltzmann methods. Comput. Math. Appl. 58, 1015–1023 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Chau, J.F., Or, D., Sukop, M.C.: Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods. Water Resour. Res. 41, W08410 (2005)

    Google Scholar 

  33. Seta, T., Takegoshi, E., Okui, K.: Lattice Boltzmann simulation of natural convection in porous media. Math. Comput. Simul. 72, 195–200 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Geller, S., Krafczyk, M., Tölke, J., Turek, S., Hron, J.: Benchmark computations based on lattice-Boltzmann, finite element and finite volume methods for laminar flows. Comput. Fluids 35, 888–897 (2006)

    Article  MATH  Google Scholar 

  35. Bhatnagar, P.L., Gross, E.P., Krook, M.: A Model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    Article  MATH  Google Scholar 

  36. Higuera, F.J., Succi, S., Benzi, R.: Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9, 345–349 (1989)

    Article  Google Scholar 

  37. Chen, H., Chen, S., Matthaeus, W.H.: Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Phys. Rev. A 45, 5339–5342 (1992)

    Article  Google Scholar 

  38. Qian, Y.H., D’Humieres, D., Lallemand, P.: Lattice BGK models for Navier-Stokes equation. Europhys. Lett. 17, 479–484 (1992)

    Article  MATH  Google Scholar 

  39. Succi, S., Karlin, I.V., Chen, H.: Role of the H-theorem in lattice Boltzmann hydrodynamic simulations. Rev. Mod. Phys. 74, 1203–1220 (2002)

    Article  Google Scholar 

  40. D’Humières, D.: Generalized lattice Boltzmann equations. Prog. Aeronaut. Astronaut. 159, 450–458 (1992)

    Google Scholar 

  41. Lallemand, P., Luo, L.S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance and stability. Phys. Rev. E 61, 6546–6562 (2000)

    Article  MathSciNet  Google Scholar 

  42. Kaehler, G., Wagner, A.J.: Derivation of hydrodynamics for multi-relaxation time lattice Boltzmann using the moment approach. Commun. Comput. Phys. 13, 614–628 (2013)

    MathSciNet  Google Scholar 

  43. D’Humières, D.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. Lond. A 360, 437–451 (2002)

    Article  MATH  Google Scholar 

  44. Geier, M.C.: Ab Initio Derivation of the Cascade Lattice Boltzmann. Ph.D. Thesis, University of Freiburg, Germany (2006)

  45. Ricot, D., Marié, S., Sagaut, P., Bailly, C.: Lattice Boltzmann method with selective viscosity filter. J. Comput. Phys. 228, 4478–4490 (2009)

    Article  MATH  Google Scholar 

  46. Ansumali, S., Arcidiacono, S., Chikatamarla, S.S., Prasianakis, N.I., Gorban, A.N., Karlin, I.V.: Quasi-equilibrium lattice Boltzmann method. Eur. Phys. J. B 56, 135–139 (2007)

    Article  Google Scholar 

  47. Asinari, P., Karlin, I.V.: Quasi-equilibrium lattice Boltzmann models with tunable bulk viscosity for enhancing stability. Phys. Rev. E 81, 016702 (2010)

    Article  Google Scholar 

  48. Ansumali, S., Karlin, I.V.: Stabilization of the lattice Boltzmann method by the H-theorem: a numerical test. Phys. Rev. E 62, 7999–8003 (2002)

    Article  MathSciNet  Google Scholar 

  49. Ansumali, S., Karlin, I.V.: Single relaxation time model for entropic lattice Boltzmann methods. Phys. Rev. E 65, 056312 (2002)

    Article  MathSciNet  Google Scholar 

  50. Singh, S., Krithivasan, S., Karlin, I.V., Succi, S., Ansumali, S.: Energy conserving lattice Boltzmann models for incompressible flow simulations. Commun. Comput. Phys. 13, 603–613 (2013)

    Google Scholar 

  51. Tosi, F., Ubertini, S., Succi, S., Karlin, I.V.: Optimization strategies for the entropic lattice Boltzmann method. J. Sci. Comput. 30, 369–387 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  52. Lee, T., Lin, C.-L.: A characteristic Galerkin method for discrete Boltzmann equation. J. Comput. Phys. 171, 336–356 (2001)

    Article  MATH  Google Scholar 

  53. Imamura, T., Suzuki, K., Nakamura, T., Yoshida, M.: Acceleration of teady-state lattice Boltzmann simulations on non-uniform mesh using local time step method. J. Comput. Phys. 202, 645–663 (2005)

    Article  MATH  Google Scholar 

  54. Cao, N., Chen, S., Jin, S., Martinez, D.: Physical symmetry and lattice symmetry in the lattice Boltzmann method. Phys. Rev. E 55, R21–R24 (1997)

    Article  Google Scholar 

  55. Mei, R., Shyy, W.: On the finite difference-based lattice Boltzmann method in curvilinear coordinates. J. Comput. Phys. 143, 426–448 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  56. Jiang, B.N.: In the Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics. Springer, New York (1998).

  57. Li, Y., LeBoeuf, E.J., Basu, P.K.: Least-squares finite-element scheme for the lattice Boltzmann method on an unstructured mesh. Phys. Rev. E 72, 046711 (2005)

    Article  Google Scholar 

  58. Nannelli, F., Succi, S.: The lattice Boltzmann equation on irregular lattices. J. Stat. Phys. 68, 401–407 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  59. Ubertini, S., Succi, S., Bella, G.: Lattice Boltzmann schemes without coordinates. Phil. Trans. R. Soc. A 362, 1763–1771 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  60. Ubertini, S., Rossi, N., Succi, S., Bella, G.: Unstructured lattice Boltzmann method in three dimensions. Int. J. Numer. Methods Fluids 49, 619–633 (2005)

    Article  MATH  Google Scholar 

  61. Ubertini, S., Bella, G., Succi, S.: Unstructured lattice Boltzmann equation with memory. Math. Comput. Simulat. 72, 237–241 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  62. Peng, G., Xi, H., Duncan, C., Chou, S.H.: Finite volume scheme for the lattice Boltzmann method on unstructured meshes. Phys. Rev. E 59, 4675–4682 (1999)

    Article  Google Scholar 

  63. Stiebler, M., Tolkeand, J., Krafczyk, M.: An upwind discretization scheme for the finite volume lattice Boltzmann method. Comput. Fluids 35, 814–819 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  64. Bernaschi, M., Succi, S., Chen, H.: Accelerated lattice Boltzmann schemes for steady-state flow simulations. J. Sci. Comput. 16, 135–144 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  65. Ricot, D., Marié, S., Sagaut, P., Bailly, C.: Lattice Boltzmann method with selective viscosity filter. J. Comput. Phys. 228, 4478–4490 (2009)

    Article  MATH  Google Scholar 

  66. Du, R., Liu, W.: A new multiple-relaxation-time lattice Boltzmann method for natural convection. J. Sci. Comput. (2012). doi:10.1007/s10915-012-9665-9

  67. Patil, D.V., Lakshmisha, K.N.: Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh. J. Comput. Phys. 228, 5262–5279 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  68. Patil, D.V., Lakshmisha, K.N.: Two-dimensional flow past circular cylinders using finite volume lattice Boltzmann formulation. Int. J. Numer. Methods Fluids 69, 1149–1164 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  69. Zarghami, A., Ubertini, S., Succi, S.: Finite-volume lattice Boltzmann modeling of thermal transport in nanofluids. Comput. Fluids 77, 56–65 (2013)

    Article  MathSciNet  Google Scholar 

  70. Ubertini, S., Bella, G., Succi, S.: Lattice Boltzmann method on unstructured grids: further developments. Phys. Rev. E 68, 016701 (2003)

    Article  MathSciNet  Google Scholar 

  71. Ubertini, S., Asinari, P., Succi, S.: Three ways to lattice Boltzmann: a unified time-marching picture. Phys. Rev. E 81, 016311 (2009)

    Article  Google Scholar 

  72. Zarghami, A., Maghrebi, M.J., Ubertini, S., Succi, S.: Modeling of bifurcation phenomena in suddenly expanded flows with a new finite volume lattice Boltzmann method. Int. J. Mod. Phys. C 22, 977–1003 (2011)

    Article  MATH  Google Scholar 

  73. Guo, Z., Zheng, C., Shi, B.: Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65, 046308 (2002)

    Article  Google Scholar 

  74. Zou, Q., He, X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9, 1591–1598 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  75. Zarghami, A., Maghrebi, M.J., Ghasemi, J., Ubertini, S.: Lattice Boltzmann finite volume formulation with improved stability. Commun. Comput. Phys. 12, 42–64 (2012)

    Google Scholar 

  76. Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using Navier-Stokes equations and a multigrid method. J. Comp. Phys. 48, 387–411 (1982)

    Article  MATH  Google Scholar 

  77. Cook, P.G.: A Guide to Regional Groundwater Flow in Fractured Rock Aquifers. Seaview Press, South Australia (2003)

  78. Hoffmann, K.A., Chiang, S.T.: Computational Fluid Dynamics for Engineers. Engineering Education System, Kansas (1993)

  79. Bear, J.: Dynamics of Fluids in Porous Media. Dover Publications, New York (1988)

  80. Gibb, J.P., Barcelona, M.J., Ritchey, J.D., Lefaivre, M.H.: Effective Porosity of Geological Materials. ISWS Report No. 351, Illinois (1984)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahad Zarghami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarghami, A., Biscarini, C., Succi, S. et al. Hydrodynamics in Porous Media: A Finite Volume Lattice Boltzmann Study. J Sci Comput 59, 80–103 (2014). https://doi.org/10.1007/s10915-013-9754-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9754-4

Keywords

Navigation