Skip to main content
Log in

PCBC: Quasiconformality of Point Cloud Mappings

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The study of surface mappings or deformations plays an important role for various applications in computer visions and graphics. An accurate and effective method to measure and control geometric distortions of the mapping is therefore necessary. Quasiconformality, which captures the local geometric distortion of a surface mapping, is a useful tool for this purpose. In discrete setting, surfaces are often represented by point clouds. Although quasiconformal theories are well developed in the continuous setting, the concept of quasiconformality on point clouds is still lacking. In this paper, we propose a geometric quantity, called the Point Cloud Beltrami Coefficient (PCBC), to measure quasiconformality of a point cloud mapping. Its ability to measure the local geometric distortion of a mapping is theoretically and numerically validated. Moreover, we propose an algorithm to solve for a point cloud mapping with a prescribed PCBC. Numerical experiments have been carried out on both synthetic and real point cloud data, which demonstrate the efficacy of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ahlfors, L.: On quasiconformal mappings. J. Anal. Math. 3(1), 1–58 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahlfors, L. V.: Conformality with respect to Riemannian metrics. na (1955)

  3. Ahlfors, L.V., Earle, C.J.: Lectures on Quasiconformal Mappings. American Mathematical Society, Providence (1966)

    MATH  Google Scholar 

  4. Alexander, N., Emil, S., Yehoshua, Z. Y.: Computing quasi-conformal maps in 3d with applications to geometric modeling and imaging. In: 2014 IEEE 28th Convention of Electrical & Electronics Engineers in Israel (IEEEI), pp. 1–5. IEEE, New York (2014)

  5. Audette, M.A., Ferrie, F.P., Peters, T.M.: An algorithmic overview of surface registration techniques for medical imaging. Med. Image Anal. 4(3), 201–217 (2000)

    Article  Google Scholar 

  6. Barhak, J., Fischer, A.: Parameterization and reconstruction from 3d scattered points based on neural network and pde techniques. IEEE Trans. Visual Comput. Gr. 7(1), 1–16 (2001)

    Article  MATH  Google Scholar 

  7. Belinskii, P., Godunov, S., Ivanov, Y.B., Yanenko, I.: The use of a class of quasiconformal mappings to construct difference nets in domains with curvilinear boundaries. USSR Comput. Math. Math. Phys. 15(6), 133–144 (1975)

    Article  MATH  Google Scholar 

  8. Belytschko, T., Lu, Y.Y., Gu, L., et al.: Element free galerkin methods. Int. J. Numer. Meth. Eng. 37(2), 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bers, L.: Mathematical Aspects of Subcritical and Transonic Gas Dynamics. Wiley, New York (1958)

    MATH  Google Scholar 

  10. Bers, L.: Quasiconformal mappings, with applications to differential equations, function theory and topology. Bull. Am. Math. Soc. 83(6), 1083–1100 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bers, L., Nirenberg, L.: On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications. Convegno Internazionale sulle Equazioni Lineari alle Derivate Parziali, Trieste 1(954), 1 (1954)

    Google Scholar 

  12. Bers, L., Nirenberg, L.: On linear and non-linear elliptic boundary value problems in the plane. Convegno Internazionale Suelle Equaziono Cremeonese, Roma 1, 141–167 (1955)

    MathSciNet  MATH  Google Scholar 

  13. Besl, P.J., McKay, N.D.: Method for registration of 3-d shapes. In: Robotics-DL Tentative, pp. 586–606. International Society for Optics and Photonics, Bellingham (1992)

  14. Carleson, L., Gamelin, T.W., Devaney, R.L.: Complex dynamics. SIAM Rev. 36(3), 504–504 (1994)

    Article  Google Scholar 

  15. Chan, H.L., Li, H., Lui, L.M.: Quasi-conformal statistical shape analysis of hippocampal surfaces for alzheimer disease analysis. J. Neurocomput. 175(A), 177–187 (2016)

    Article  Google Scholar 

  16. Chan, H.L., Lui, L.M.: Detection of n-dimensional shape deformities using n-dimensional quasi-conformal maps. J. Geom. Imaging Comput. 1(4), 395–415 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Choi, P.T., Lam, K.C., Lui, L.M.: Flash: Fast landmark aligned spherical harmonic parameterization for genus-0 closed brain surfaces. SIAM J. Imaging Sci. 8(1), 67–94 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Choi, P.T., Lui, L.M.: Fast disk conformal parameterization of simply-connected open surfaces. J. Sci. Comput. 65(3), 1065–1090 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Choi, P.T., Ho, K.T., Lui, L.M.: Spherical conformal parameterization of genus-0 point clouds for meshing. SIAM J. Imaging Sci. 9(4), 1582–1618 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Daripa, P.: On a numerical method for quasi-conformal grid generation. J. Comput. Phys. 96(1), 229–236 (1991)

    Article  MATH  Google Scholar 

  21. Floater, M., Hormann, K.: Parameterization of triangulations and unorganized points. In: Tutorials on Multiresolution in Geometric Modelling, pp. 287–316. Springer, Berlin (2002)

  22. Floater, M. S.: Meshless parameterization and b-spline surface approximation. In: The Mathematics of Surfaces IX, pp. 1–18. Springer, Berlin (2000)

  23. Floater, M.S.: Analysis of curve reconstruction by meshless parameterization. Numer. Algorithms 32(1), 87–98 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Floater, M.S.: Mean value coordinates. Comput. Aided Geom. Des. 20(1), 19–27 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Floater, M.S., Reimers, M.: Meshless parameterization and surface reconstruction. Comput. Aided Geom. Des. 18(2), 77–92 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gardiner, F., Lakic, N.: Quasiconformal teichmüller theory. Number 76. American Mathematical Society, Providence (2000)

  27. Grotzsch, H.: Uber die verzerrung bei schlichten nichtkonformen abbildungen und eine damit zusammenh angende erweiterung des picardschen. Rec. Math 80, 503–507 (1928)

    MATH  Google Scholar 

  28. Guo, X., Li, X., Bao, Y., Gu, X., Qin, H.: Meshless thin-shell simulation based on global conformal parameterization. IEEE Trans. Vis. Comput. Gr. 12(3), 375–385 (2006)

    Article  Google Scholar 

  29. Ho, K.T., Lui, L.M.: QCMC: quasi-conformal parameterizations for multiply-connected domains. Adv. Comput. Math. 42(2), 279–312 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hormann, K., Reimers, M.: Triangulating point clouds with spherical topology. Curve and Surface Design: Saint-Malo, pp. 215–224 (2002)

  31. Lai, R., Liang, J., Zhao, H.: A local mesh method for solving pdes on point clouds. Inverse Prob. Imaging 7(3), 737–755 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lam, K.C., Lui, L.M.: Landmark-and intensity-based registration with large deformations via quasi-conformal maps. SIAM J. Imaging Sci. 7(4), 2364–2392 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lehto, O., Virtanen, K.I., Lucas, K.: Quasiconformal Mappings in the Plane, vol. 126. Springer, New York (1973)

    Book  MATH  Google Scholar 

  34. Li, E., Che, W., Zhang, X., Zhang, Y.-K., Xu, B.: Direct quad-dominant meshing of point cloud via global parameterization. Comput. Gr. 35(3), 452–460 (2011)

    Article  Google Scholar 

  35. Li, E., Zhang, X., Che, W., Dong, W.: Global parameterization and quadrilateral meshing of point cloud. In: ACM SIGGRAPH ASIA 2009 Posters, p. 54. ACM, New York (2009)

  36. Liang, J., Lai, R., Wong, T. W., Zhao, H.: Geometric understanding of point clouds using laplace-beltrami operator. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 214–221. IEEE, New York (2012)

  37. Liang, J., Zhao, H.: Solving partial differential equations on point clouds. SIAM J. Sci. Comput. 35(3), A1461–A1486 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu, G.-R., Gu, Y.-T.: An Introduction to Meshfree Methods and Their Programming. Springer Science & Business Media, Berlin (2005)

    Google Scholar 

  39. Lui, L.M., Lam, K.C., Wong, T.W., Gu, X.: Texture map and video compression using beltrami representation. SIAM J. Imaging Sci. 6(4), 1880–1902 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lui, L.M., Lam, K.C., Yau, S.-T., Gu, X.: Teichmuller mapping (t-map) and its applications to landmark matching registration. SIAM J. Imaging Sci. 7(1), 391 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lui, L.M., Wen, C.: Geometric registration of high-genus surfaces. SIAM J. Imaging Sci. 7(1), 337–365 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lui, L.M., Wong, T.W., Thompson, P., Chan, T., Gu, X., Yau, S.-T.: Compression of surface registrations using beltrami coefficients. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2839–2846. IEEE, New York (2010)

  43. Lui, L. M., Wong, T. W., Thompson, P., Chan, T., Gu, X., Yau, S.-T.: Shape-based diffeomorphic registration on hippocampal surfaces using beltrami holomorphic flow. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2010, pp. 323–330. Springer, New York (2010)

  44. Lui, L.M., Wong, T.W., Zeng, W., Gu, X., Thompson, P.M., Chan, T.F., Yau, S.T.: Detection of shape deformities using yamabe flow and beltrami coefficients. Inverse Problems Imaging 4(2), 311–333 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lui, L.M., Wong, T.W., Zeng, W., Gu, X., Thompson, P.M., Chan, T.F., Yau, S.-T.: Optimization of surface registrations using beltrami holomorphic flow. J. Sci. Comput. 50(3), 557–585 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mastin, C., Thompson, J.: Quasiconformal mappings and grid generation. SIAM J. Sci. Stat. Comput. 5(2), 305–310 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  47. Miao, Y.-W., Feng, J.-Q., Xiao, C.-X., Peng, Q.-S., Forrest, A.R.: Differentials-based segmentation and parameterization for point-sampled surfaces. J. Comput. Sci. Technol. 22(5), 749–760 (2007)

    Article  Google Scholar 

  48. Mirzaei, D.: Analysis of moving least squares approximation revisited. J. Comput. Appl. Math. 282, 237–250 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Mirzaei, D., Schaback, R., Dehghan, M.: On generalized moving least squares and diffuse derivatives. IMA J. Numer. Anal. 32, 983–1000 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Pomerleau, F., Colas, F., Siegwart, R., Magnenat, S.: Comparing icp variants on real-world data sets. Auton. Robots 34(3), 133–148 (2013)

    Article  Google Scholar 

  51. Pulford, J.H., Walden, B.L.: Angle distortion and conformality. Expos. Math. 21, 33–45 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  52. Rusinkiewicz, S., Levoy, M.: Efficient variants of the icp algorithm. In: Third International Conference on 3-D Digital Imaging and Modeling, pp. 145–152 (2001)

  53. Taimouri, V., Hua, J.: Deformation similarity measurement in quasi-conformal shape space. Gr. Models 76(2), 57–69 (2014)

    Article  Google Scholar 

  54. Tam, G.K., Cheng, Z.-Q., Lai, Y.-K., Langbein, F.C., Liu, Y., Marshall, D., Martin, R.R., Sun, X.-F., Rosin, P.L.: Registration of 3d point clouds and meshes: a survey from rigid to nonrigid. IEEE Trans. Visual Comput. Gr. 19(7), 1199–1217 (2013)

    Article  Google Scholar 

  55. Tat, L.Y., Chun, L.K., Ming, L.L.: Landmark-matching transformation with large deformation via n-dimensional quasi-conformal maps. J. Sci. Comput. 67(3), 926–954 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  56. Tewari, G., Gotsman, C., Gortler, S.J.: Meshing genus-1 point clouds using discrete one-forms. Comput. Gr. 30(6), 917–926 (2006)

    Article  Google Scholar 

  57. Van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. In: Computer Graphics Forum, vol. 30, pp. 1681–1707. Wiley Online Library, New York (2011)

  58. Wang, L., Yuan, B., Miao, Z.: 3d point clouds parameterization alogrithm. In: 9th International Conference on Signal Processing, 2008. ICSP 2008, pp. 1410–1413. IEEE, New York (2008)

  59. Weber, O., Myles, A., Zorin, D.: Computing extremal quasiconformal maps. In: Computer Graphics Forum, vol. 31, pp. 1679–1689. Wiley Online Library, New work (2012)

  60. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  61. Wong, T., Zhao, H.: Computing surface uniformizations using discrete beltrami flow. SIAM J. Sci. Comput. 37(3), A1342–A1364 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  62. Wong, T. W., Gu, X., Chan, T. F., Lui, L. M.: Parallelizable inpainting and refinement of diffeomorphisms using beltrami holomorphic flow. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2383–2390. IEEE, New York (2011)

  63. Zeng, W., Gu, X. D.: Registration for 3d surfaces with large deformations using quasi-conformal curvature flow. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2457–2464. IEEE, New York (2011)

  64. Zeng, W., Lui, L.M., Luo, F., Chan, T.F.-C., Yau, S.-T., Gu, D.X.: Computing quasiconformal maps using an auxiliary metric and discrete curvature flow. Numer. Math. 121(4), 671–703 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  65. Zhang, L., Liu, L., Gotsman, C., Huang, H.: Mesh reconstruction by meshless denoising and parameterization. Comput. Gr. 34(3), 198–208 (2010)

    Article  Google Scholar 

  66. Zwicker, M., Gotsman, C.: Meshing point clouds using spherical parameterization. In Proceedings of the Eurographics Symposium, Point-Based Graphics (2004)

  67. Zwicker, M., Pauly, M., Knoll, O., Gross, M.: Pointshop 3d: an interactive system for point-based surface editing. In: ACM Transactions on Graphics (TOG), vol. 21, pp. 322–329. ACM, New York (2002)

Download references

Acknowledgements

L.M. Lui is supported by HKRGC GRF (Project ID: 14303414).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lok Ming Lui.

Appendices

Appendix

A. Proof of Lemma 1

Proof

Let \(g:\varOmega \rightarrow \mathbb {R}\) be an arbitrary function. We use the notation \(\partial _j q_{g,p}(x)\) to denote diffuse derivatives approximating partial derivatives of g near an arbitrary point p. Let \(\tilde{E}_{g,j}(x) = \partial _j q_{g,x}(x) - \partial _j g(x)\) be the error of diffuse derivatives.

As stated above, for each point \(x\in \varOmega \),

$$\begin{aligned} |\tilde{E}_{g,j}(x)| \le C_{MLS} \Vert g\Vert _{C^3(\varOmega ^*)}h^2. \end{aligned}$$
(100)

From Definition 4, the following equation can be obtained.

$$\begin{aligned} \tilde{\mu }(x) = \frac{(\partial _1 q_{u,x} - \partial _2 q_{v,x}) + i(\partial _1 q_{v,x} + \partial _2 q_{u,x})}{(\partial _1 q_{u,x} + \partial _2 q_{v,x}) + i(\partial _1 q_{v,x} - \partial _2 q_{u,x})}. \end{aligned}$$
(101)

Then by comparing \(\tilde{\mu }\) with \(\mu (f)\), one can derive

$$\begin{aligned} \tilde{\mu } = \frac{(\partial _1 u - \partial _2 v) + i(\partial _1 v + \partial _2 u) + e_1}{(\partial _1 u + \partial _2 v) + i(\partial _1 v - \partial _2 u) + e_2}, \end{aligned}$$
(102)

where \(|e_j|\le 2\sqrt{2} C_{MLS} \Vert f\Vert _{C^3(\varOmega ^*)} h^2\), \(j=1,2\).

According to the definition of Beltrami coefficient, \(\partial _z f \ne 0\) everywhere in the compact domain \(\varOmega \), which implies that \(|\partial _z f|\) has a positive lower bound, denoted by L. Without loss of generality, assume \(\Vert f\Vert _{C^3(\varOmega ^*)}>0\). Let \(C_1(f) = \sqrt{\frac{L}{4\sqrt{2}C_{MLS}\Vert f\Vert _{C^3(\varOmega ^*)}}}\), then \(C_1(f)>0\), and \(h\le C_1(f)\) implies \(|e_2|\le L/2\). Then,

$$\begin{aligned} |\tilde{\mu } - \mu (f)| \le \frac{|e_1||\partial _z f| + |e_2||\partial _{\bar{z}} f|}{L^2/2} \le C_2(f)h^2, \end{aligned}$$
(103)

where \(C_2(f) = \frac{32C_{MLS}\Vert f\Vert _{C^3(\varOmega ^*)} \Vert f\Vert _{C^1(\varOmega )}}{L^2}\).

With a similar argument, one can prove the result for standard Beltrami coefficient. \(\square \)

B. Proof of Lemma 2

Proof

Fix \(p\in \mathcal {P}_1\). Let \(x_0 = \phi _1^{-1}(p)\) and \(x_1 = {\varvec{\varphi }}_1^{-1}(p)\). Denote \(\mu _1 = \mu (\phi _2^{-1}\circ f\circ \phi _1)\). Let \(\tilde{\sigma }_1\) and \(\tilde{\sigma }_2\) be the diffuse Beltrami coefficient of \({\varvec{\varphi }}_2^{-1}\circ f \circ {\varvec{\varphi }}_1\) and \(\phi _2^{-1}\circ f\circ \phi _1|_{{\varvec{\varphi }}_1^{-1}(\mathcal {P}_1)}\). Then

$$\begin{aligned} \begin{aligned}&|\tilde{\mu }(p)-\mu _0(p)| = |\tilde{\sigma }_1(x_1) - \mu _1(x_0)|\\&\quad \le |\tilde{\sigma }_1(x_1) - \tilde{\sigma }_2(x_1)| + |\tilde{\sigma }_2(x_1) - \mu _1(x_1)| + |\mu _1(x_1) - \mu _1(x_0)|\\&\quad \le |\tilde{\sigma }_1(x_1) - \tilde{\sigma }_2(x_1)| + C_0h_1^2 + 2\Vert \mu _1\Vert _{C^1(\varOmega )}\epsilon . \end{aligned} \end{aligned}$$
(104)

Consider MLS on \({\varvec{\varphi }}_1^{-1}(\mathcal {P}_1)\), let \(a_{k,j}(y) = (q_k(y)^TA_y)_j\), \(k=1,2\). By definition,

$$\begin{aligned} \tilde{\sigma }_k = \frac{\left( \sum _j u_{k,j}a_{1,j} - \sum _j v_{k,j}a_{2,j}\right) +i\left( \sum _j v_{k,j}a_{1,j} + \sum _j u_{k,j}a_{2,j}\right) }{\left( \sum _j u_{k,j}a_{1,j} + \sum _j v_{k,j}a_{2,j}\right) +i\left( \sum _j v_{k,j}a_{1,j} - \sum _j u_{k,j}a_{2,j}\right) }, \end{aligned}$$
(105)

where \([u_{1,j},v_{1,j}]^T = {\varvec{\varphi }}_2^{-1}(f(p_j))\), and \([u_{2,j},v_{2,j}]^T = \phi _2^{-1}\circ f\circ \phi _1\circ {\varvec{\varphi }}_1^{-1}(p_j)\). Hence

$$\begin{aligned} \begin{aligned}&|[u_{1,j},v_{1,j}]^T - [u_{2,j},v_{2,j}]^T|\\&\quad \le |{\varvec{\varphi }}_2^{-1}(f(p_j))-\phi _2^{-1}(f(p_j))| + |\phi _2^{-1}\circ f(p_j) - \phi _2^{-1}\circ f\circ \phi _1({\varvec{\varphi }}_1^{-1}(p_j))|\\&\quad \le \epsilon + 2\Vert \phi _2^{-1}\circ f\circ \phi _1\Vert _{C^1(\varOmega )}\epsilon =:C_1\epsilon . \end{aligned} \end{aligned}$$
(106)

By MLS theory, \(\sum _j |a_{k,j}(y)| \le C_2h_1^{-1}\). Then \( |\sum _j u_{1,j}a_{k,j} - \sum _j u_{2,j}a_{k,j}| \le C_1C_2\epsilon /h_1 \), and \(|\sum _j v_{1,j}a_{k,j} - \sum _j v_{2,j}a_{k,j}|\le C_1C_2\epsilon /h_1\). Moreover, from the error analysis of MLS,

$$\begin{aligned} \left| \left[ \sum _j u_{2,j}a_{k,j},\sum _j v_{2,j}a_{k,j}\right] ^T - \partial _k(\phi _2^{-1}\circ f\circ \phi _1) \right| \le C_3h^2. \end{aligned}$$
(107)

By a similar argument as in the proof of Proposition 1,

$$\begin{aligned} |\tilde{\sigma }_1(x_1) - \tilde{\sigma }_2(x_1)| \le \frac{16C_1C_2\epsilon \left( |\partial _z(\phi _2^{-1}\circ f\circ \phi _1)| + |\partial _{\bar{z}}(\phi _2^{-1}\circ f\circ \phi _1)|\right) }{L^2h_1}=:\frac{C_4\epsilon }{h_1}, \end{aligned}$$
(108)

where \(L = \min _{\varOmega } |\partial _z (\phi _2^{-1}\circ f\circ \phi _1)|>0\). Therefore,

$$\begin{aligned} \max _{p\in \mathcal {P}_1}|\tilde{\mu }(p)-\mu _0(p)|\le C_5\frac{\epsilon }{h_1} + C_0h_1^2, \end{aligned}$$
(109)

where \(C_5 = C_4 + 2\Vert \mu _1\Vert _{C^1(\varOmega )}h_0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, T., Lui, L.M. PCBC: Quasiconformality of Point Cloud Mappings. J Sci Comput 77, 597–633 (2018). https://doi.org/10.1007/s10915-018-0724-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0724-8

Keywords

Navigation