Skip to main content
Log in

A High-Voltage Pulse Generation Instrument for Electrochemotherapy Method

  • Research Article
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Electrochemotherapy (ECT) is a new method that uses anticancer drugs delivery with intensive electrical pulses. Recently, ECT as the treatment method can be applied for basal cell and spin cell carcinoma and for melanoma metastases. In this paper, a new design of a high voltage pulse generator with variable output pulse magnitude, repetition frequency, and pulse duration is presented. Furthermore, it has presented the basic theory of ECT, the importance/advantages against other cancer treatment methods, the theoretical model of electroporated cell membrane, and the application ways of ECT method. The proposed instrument is suitable for effective drug delivery of ECT in anti-tumor treatment. Also, this instrument can be applied to gene transfer/therapy methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Powell, K. T., Morgentaller, A. W., and Weaver, J. C., Tissue electroporation: Observation of reversible electrical breakdown in viable frog skin. Biophys. J. 56:1163–1171, 1989.

    Google Scholar 

  2. Prausnitz, M. R., Bose, V. G., Langer, R., and Weaver, J. C., Electroporation of mammalian skin: A mechanism to enhance transdermal drug delivery. Proc. Natl. Acad. Sci. U.S.A. 90:10504–10508, 1993.

    Article  Google Scholar 

  3. Heller, R., and Grasso, R. J., Electrofusion of individual animal cells directly to intact corneal epithelial tissue. Biochem. Biophys. Acta 1024:185–188, 1990.

    Google Scholar 

  4. Heller, R., and Gilbert, R., Biological applications of cell–tissue electrofusion, In Chang, D. C., Chassy, B. M., Saunders, J. A., and Sowers, A. E. (eds.), Guide to electroporation and electrofusion, Academic Press, San Diego, pp. 393–410, 1992.

    Google Scholar 

  5. Mir, L. M., Banoun, H., and Paoletti, C., Introduction of definite amounts of nonpermeant molecules into living cells after electropermeabilization: Direct access to the cytosol. Exp. Cell Res. 175:15–25, 1988.

    Article  Google Scholar 

  6. Orlowski, S., Belehradek, J. J., Paoletti, C., and Mir, L. M., Transient electropermeabilization of cells in cultur. Biochem. Pharmacol. 37:4727–4733, 1988.

    Article  Google Scholar 

  7. Chang, D. C., Chassy, B. M., Saunders, J. A., Sowers, A. E., editors,. Guide to Electroporation and Electrofusion, Academic Press, San Diego, 1992.

    Google Scholar 

  8. Mir, L. M., Orlowski, S., Belehradek, J. J., and Paoletti, C., Electrochemotherapy: Potentiation of antitumor effect of bleomycin by local electric pulses. Eur. J. Cancer 27:68–72, 1991.

    Article  Google Scholar 

  9. Belehradek, M., Domenge, C., Luboinski, B., Orlowski, S., Belehradek, J. Jr., Mir, L. M., Electrochemotherapy, a new antitumor treatment: First clinical phase I-II trial. Cancer 72:3694–3700, 1993.

    Article  Google Scholar 

  10. Sersa, G., Cemazar, M., and Miklavcic, D., Antitumor effectiveness of electrochemotherapy with cis-diamminechloroplatinum (II) in mice. Cancer Res. 55:3450–3455, 1995.

    Google Scholar 

  11. Prausnitz, M. R., Bose, V. G., langer, R., and Weaver, J. C., Electroporation of mammalian skin: A mechanism to enhance transdermal drug delivery. Proc. Natl. Acad. Sci. USA 90:10504–10508, 1993.

    Article  Google Scholar 

  12. Hofmann, G. A., Rustrum, W. V., and Suder, K. S., Electro-incorporation of microcarriers as a method for the transdermal delivery of large molecules. Bioelectrochem. Bioenerg. 38:209–222, 1995.

    Article  Google Scholar 

  13. Zhang, L., Li, L., Hofmann, G. A., and Hoffman, R. M., Depth-targeted efficient gene delivery and expression in the skin by pulsed electric fields: An approach to gene therapy of skin aging and other diseases. Biochem. Biophys. Res. Commun. 220:633–636, 1996.

    Article  Google Scholar 

  14. Mathews, K. E., Dev, S. B., Toneguzzo, F., and Keating, A., Electroporation for gene therapy. In Nickoloff, J. A. (ed.), Methods in Molecular Biology, vol. 48, pp. 273–280, 1995.

  15. Giordano, F. J., Dev, S. B., Adams, M., Hofmann, G. A., and Brown, D. L., In vivo gene delivery to the rabbit carotid by electroporation, American College of Cardiology 45th Annual Scientific Session, Orlando Florida USA, pp. 780–784, March 1996.

  16. Zee-Cheng, R. K., and Cheng, C. C., Delivery of anticancer drugs. Meth. Find. Exp. Clin. Pharmacol. 11(7–8):439–529, 1989.

    Google Scholar 

  17. Wearley, L. L., Recent progress in protein and peptide delivery by noninvasive routes. Crit. Rev. Ther. Drug Carrier Syst. 8:331–394, 1991.

    Google Scholar 

  18. Langer, R., New methods of drug delivery. Science 249;1527–1533, 1990.

    Google Scholar 

  19. Dev, S. B., and Hofmann, G. A., Electrochemotherapy- a novel method of cancer treatment. Can. Treat Rev. 20:105–115, 1994.

    Article  Google Scholar 

  20. Nanda, G. S., and Mishra, K. P., Studies on electroporation of thermally and chemically treated human erythrocytes. Bioelectrochem. Bioenerg. 34:129–134, 1994.

    Article  Google Scholar 

  21. Teissie, J., Eynard, N., Gabriel, B., and Rols, M. P., Electropermeabilization of cell membranes. Adv. Drug Deliv. Rev. 35:3–19, 1999.

    Article  Google Scholar 

  22. Kotnik, T., Bobanovic, F., and Miklavcic, D., Sensitivity of tranmembrane voltage induced by applied electric fields: A theoretical analysis. Bioelectrochem. Bioenerg. 43:285–291, 1997.

    Article  Google Scholar 

  23. Kotnik, T., Mir, L. M., Flisar, K., Puc, M., and Miklavcic, D., Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses: Part I. Increased efficiency of permeabilization. Bioelectrochemistry 54:83–90, 2001.

    Article  Google Scholar 

  24. Heller, R., Jaroszeski, M., Leo-Messina, J., Gilbert, R., Treatment of B16 melanoma with the combination of electroporation and chemotherapy. Bioelectrochem. Bioenerg. 36:83–87, 1995.

    Article  Google Scholar 

  25. Miklavcic, D., Beravs, K., Semrov, D., Cemazar, M., Demsar, F., and Sersa, G., The importance of electric field distribution for effective in vivo electroporation of tissues. Biophys. J. 74:1998.

  26. DeBruin, K. A., and Krassowska, W., Electroporation and shock-induced transmembrane potential in a cardiac fiber during defibrillation strength shocks. Ann. Biomed. Eng. 26:584–596, 1998.

    Article  Google Scholar 

  27. DeBruin, K. A., and Krassowska, W., Modelling electroporation single cell: I. Effects of field strength and rest potential. Biophys. J. 77:1213–1224, 1999.

    Article  Google Scholar 

  28. Glaser, R. W., Leikin, S. L., Chernomordik, L. V., Pastuhenko, V. K., and Sokirko, A. I., Reversible electrical breakdown of lipid bilayers: formation and evolutionof pores. Biochem. Biophys. Acta. 940:257–287, 1988.

    Google Scholar 

  29. Glass, L. F., Jaroszeski, M., Gilbert, R., and Reintgen, D. S., Intralesional bleomycin-mediated electrochemotherapy in 20 patients with basal cell carcinoma. J. Am. Acad. Dermatol. 37:596–599, 1997.

    Article  Google Scholar 

  30. Orlowski, S., An, D. J., Belehradek, Jr J., and Mir, L. M., Antimetastatic effects of electrochemotherapy and of histoincompatible interleukin-2 secreting cells in the murine Lewis lung tumor. Anti-Cancer Drug 9:551–556, 1998.

    Article  Google Scholar 

  31. Ramirez, L. H., Orlowski, S., An, D. J., Bindoula, G., Dzodic, R., Ardouin, P., Bognel, C., Belehradek, Jr J., Munck, J. N., and Mir, L. M., Electrochemotherapy on liver tumors in rabbits. Br. J. Cancer 77:2104–2111, 1998.

    Google Scholar 

  32. Belehradek, Jr. J., Orlowski, S., Ramirez, L. H., Pron, G., Poddevin, B., and Mir, L. M., Electropermeabilization of cells in tissues assessed by the qualitative and quantitative electroloading of bleomycin. Biochim. Biophys. Acta 1190:155–163, 1994.

    Article  Google Scholar 

  33. Gehl, J. SØrensen, T. H., Nielsen, K., Raskmark, P., Nielsen, S. L., SkØvsgaard, T., and Mir, L. M., In vivo electroporation of skeletal muscle: Threshold, efficacy and relation to electric field distribution. Biochim. Biophys. Acta 1428:233–240, 1999.

    Google Scholar 

  34. Miklavcic, D., Semrov, D., Mekid, H., and Mir, L. M., A validated model of in vivo field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim. Biophys. Acta (BBA)- General Subject 1523:73–83, 2000.

    Article  Google Scholar 

  35. Gehl, J., and Mir, L. M., Determination of optimal parameters for in vivo gene transfer by electroporation using a rapid in vivo test for cell electropermeabilization. Biochem. Biophys. Res. Commun. 261:377–380, 1999.

    Article  Google Scholar 

  36. Salford, L. G., Persson, B. R. R., Brun, A., Ceberg, C. P., et al., A new brain tumor therapy combining bleomycin with in vivo electropermeabilization. Biochem. Biophys. Res. Comm. 194(2):938–943, 1993.

    Article  Google Scholar 

  37. Mir, L. M., Belehradek, M., Domenge, C., Orlowski, S. Poddevin, B., Belehradek, J. Jr., Schwaab, G., Luboinski, B., Paoletti, C., Electrochemotherapy, a novel antitumor treatment: First clinic trial. C.R. Acad. Sci. Paris 313:613–618, 1991.

    Google Scholar 

  38. Chien, Y. W., Systemic delivery of peptide based pharmaceuticals by transdermal periodic iontotherapeutic system, In Gurny, R., and Teubner, A. (eds.), Dermal and Transdermal Drug Delivery—New Insights and Perspectives, Wissenschaftlich Verlagsgesellschaft, Stuttgart, Germany, pp. 129–152, 1993.

    Google Scholar 

  39. Heller, R., Jaroszeski, M. J., Glass, L. F., Messina, J. L., Rapaport, D. P., Decont, R. C., Fenske, N. A., Gilbert, R. A.,Mir, L. M., Reintgen, D. S., Phase I/II trial for thetreatment of cutaneous and subcutaneous tumors using electrochemotherapy. Cancer 77:964–971, 1996.

    Article  Google Scholar 

  40. Domenge, C., Orlowski, S., Luboinski, B., et al., Antitumor electrochemotherapy: new advances in the clinical protocol. Cancer 77:956–963, 1996.

    Article  Google Scholar 

  41. Rols, M. P., Bachaud, J. M., Giraud, P., Chevreau, C., Roche, H., Teissie, J., Electrochemotherapy of cutaneous metastases in malignant melanoma. Melanoma Res. 10:468–474, 2000.

    Article  Google Scholar 

  42. Heller, R., Jaroszeski, M. J., Reintgen, D. S., Puleo, C. A., Deconti, R. C., Gilbert, R. A., Glass, L. F., Treatment of cutaneous and subcutaneous tumors with electrochemo-therapy using intralesional bleomycin. Cancer 83:148–157, 1998.

    Article  Google Scholar 

  43. Gehl, J., and Geertsen, P. F., Efficient palliation of haemorrhaging malignant melanoma skin metastases by electrochemotherapy. Melanoma Res. 10:585–589, 2000.

    Article  Google Scholar 

  44. Kubota, Y., Mir, L. M., Nakada, T., Sasagawa, I., Suzuki, H., Aoyama, N., Successful treatment of metastatic skin lesions with electrochemotherapy. J. Urol. 160:1426, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmut Tokmakçı.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokmakçı, M. A High-Voltage Pulse Generation Instrument for Electrochemotherapy Method. J Med Syst 30, 145–151 (2006). https://doi.org/10.1007/s10916-005-7979-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-005-7979-y

Keywords

Navigation