Skip to main content

Advertisement

Log in

Adaptive Neuro-Fuzzy Inference Systems for Automatic Detection of Breast Cancer

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

This paper intends to an integrated view of implementing adaptive neuro-fuzzy inference system (ANFIS) for breast cancer detection. The Wisconsin breast cancer database contained records of patients with known diagnosis. The ANFIS classifiers learned how to differentiate a new case in the domain by given a training set of such records. The ANFIS classifier was used to detect the breast cancer when nine features defining breast cancer indications were used as inputs. The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach. Some conclusions concerning the impacts of features on the detection of breast cancer were obtained through analysis of the ANFIS. The performance of the ANFIS model was evaluated in terms of training performances and classification accuracies and the results confirmed that the proposed ANFIS model has potential in detecting the breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Miller, A. S., Blott, B. H., and Hames, T. K., Review of neural network applications in medical imaging and signal processing. Med. Biol. Eng. Comput. 30:449–464, 1992 doi:10.1007/BF02457822.

    Article  Google Scholar 

  2. Mobley, B. A., Schechter, E., Moore, W. E., McKee, P. A., and Eichner, J. E., Predictions of coronary artery stenosis by artificial neural network. Artif. Intell. Med. 18:187–203, 2000 doi:10.1016/S0933-3657(99)00040-8.

    Article  Google Scholar 

  3. Übeyli, E. D., Time-varying biomedical signals analysis with multiclass support vector machines employing Lyapunov exponents. Digit. Signal Process. 18:4646–656, 2008 doi:10.1016/j.dsp.2007.10.001.

    Article  Google Scholar 

  4. Übeyli, E. D., Usage of eigenvector methods to improve reliable classifier for Doppler ultrasound signals. Comput. Biol. Med. 38:5563–573, 2008 doi:10.1016/j.compbiomed.2008.02.003.

    Article  Google Scholar 

  5. Übeyli, E. D., Adaptive neuro-fuzzy inference system employing wavelet coefficients for detection of ophthalmic arterial disorders. Expert Syst. Appl. 34:32201–2209, 2008 doi:10.1016/j.eswa.2007.02.020.

    Article  Google Scholar 

  6. Übeyli, E. D., Comparison of different classification algorithms in clinical decision-making. Expert Syst. 24:117–31, 2007 doi:10.1111/j.1468-0394.2007.00418.x.

    Article  Google Scholar 

  7. Übeyli, E. D., Detection of electrocardiogram beats using a fuzzy similarity index. Expert Syst. 24:287–96, 2007 doi:10.1111/j.1468-0394.2007.00422.x.

    Article  Google Scholar 

  8. Übeyli, E. D., Combining neural network models for automated diagnostic systems. J. Med. Syst. 30:6483–488, 2006 doi:10.1007/s10916-006-9034-z.

    Article  Google Scholar 

  9. Übeyli, E. D., A mixture of experts network structure for breast cancer diagnosis. J. Med. Syst. 29:5569–579, 2005 doi:10.1007/s10916-005-6112-6.

    Article  Google Scholar 

  10. Kordylewski, H., Graupe, D., and Liu, K., A novel large-memory neural network as an aid in medical diagnosis applications. IEEE Trans. Inf. Technol. Biomed. 5:3202–209, 2001 doi:10.1109/4233.945291.

    Article  Google Scholar 

  11. Kwak, N., and Choi, C.-H., Input feature selection for classification problems. IEEE Trans. Neural Netw. 13:1143–159, 2002 doi:10.1109/72.977291.

    Article  Google Scholar 

  12. Dubois, D., and Prade, H., An introduction to fuzzy systems. Clin. Chim. Acta. 270:3–29, 1998 doi:10.1016/S0009-8981(97)00232-5.

    Article  Google Scholar 

  13. Kuncheva, L. I., and Steimann, F., Fuzzy diagnosis. Artif. Intell. Med. 16:121–128, 1999 doi:10.1016/S0933-3657(98)00068-2.

    Article  Google Scholar 

  14. Nauck, D., and Kruse, R., Obtaining interpretable fuzzy classification rules from medical data. Artif. Intell. Med. 16:149–169, 1999 doi:10.1016/S0933-3657(98)00070-0.

    Article  Google Scholar 

  15. Jang, J.-S. R., Self-learning fuzzy controllers based on temporal backpropagation. IEEE Trans. Neural Netw. 3:5714–723, 1992 doi:10.1109/72.159060.

    Article  Google Scholar 

  16. Jang, J.-S. R., ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23:3665–685, 1993 doi:10.1109/21.256541.

    Article  MathSciNet  Google Scholar 

  17. Usher, J., Campbell, D., Vohra, J., and Cameron, J., A fuzzy logic-controlled classifier for use in implantable cardioverter defibrillators. Pace-Pacing Clin. Electrophysiol. 22:183–186, 1999 doi:10.1111/j.1540-8159.1999.tb00329.x.

    Article  Google Scholar 

  18. Belal, S. Y., Taktak, A. F. G., Nevill, A. J., Spencer, S. A., Roden, D., and Bevan, S., Automatic detection of distorted plethysmogram pulses in neonates and paediatric patients using an adaptive-network-based fuzzy inference system. Artif. Intell. Med. 24:149–165, 2002 doi:10.1016/S0933-3657(01)00099-9.

    Article  Google Scholar 

  19. Virant-Klun, I., and Virant, J., Fuzzy logic alternative for analysis in the biomedical sciences. Comput. Biomed. Res. 32:305–321, 1999 doi:10.1006/cbmr.1999.1517.

    Article  Google Scholar 

  20. West, D., and West, V., Model selection for a medical diagnostic decision support system: a breast cancer detection case. Artif. Intell. Med. 20:383–204, 2000 doi:10.1016/S0933-3657(00)00063-4.

    Article  Google Scholar 

  21. Setiono, R., Extracting rules from pruned neural networks for breast cancer diagnosis. Artif. Intell. Med. 8:137–51, 1996 doi:10.1016/0933-3657(95)00019-4.

    Article  Google Scholar 

  22. Setiono, R., Generating concise and accurate classification rules for breast cancer diagnosis. Artif. Intell. Med. 18:3205–219, 2000 doi:10.1016/S0933-3657(99)00041-X.

    Article  Google Scholar 

  23. Wolberg, W. H., and Mangasarian, O. L., Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Natl. Acad. Sci. 87:9193–9196, 1990.

    Article  MATH  Google Scholar 

  24. Jerez-Aragones, J. M., Gomez-Ruiz, J. A., Ramos-Jimenez, G., Munoz-Perez, J., and Alba-Conejo, E., A combined neural network and decision trees model for prognosis of breast cancer relapse. Artif. Intell. Med. 27:145–63, 2003 doi:10.1016/S0933-3657(02)00086-6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Derya Übeyli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Übeyli, E.D. Adaptive Neuro-Fuzzy Inference Systems for Automatic Detection of Breast Cancer. J Med Syst 33, 353 (2009). https://doi.org/10.1007/s10916-008-9197-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-008-9197-x

Keywords

Navigation