Skip to main content
Log in

KinoHaptics: An Automated, Wearable, Haptic Assisted, Physio-therapeutic System for Post-surgery Rehabilitation and Self-care

  • Patient Facing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

A carefully planned, structured, and supervised physiotherapy program, following a surgery, is crucial for the successful diagnosis of physical injuries. Nearly 50 % of the surgeries fail due to unsupervised, and erroneous physiotherapy. The demand for a physiotherapist for an extended period is expensive to afford, and sometimes inaccessible. Researchers have tried to leverage the advancements in wearable sensors and motion tracking by building affordable, automated, physio-therapeutic systems that direct a physiotherapy session by providing audio-visual feedback on patient’s performance. There are many aspects of automated physiotherapy program which are yet to be addressed by the existing systems: a wide classification of patients’ physiological conditions to be diagnosed, multiple demographics of the patients (blind, deaf, etc.), and the need to pursue patients to adopt the system for an extended period for self-care. In our research, we have tried to address these aspects by building a health behavior change support system called KinoHaptics, for post-surgery rehabilitation. KinoHaptics is an automated, wearable, haptic assisted, physio-therapeutic system that can be used by a wide variety of demographics and for various physiological conditions of the patients. The system provides rich and accurate vibro-haptic feedback that can be felt by the user, irrespective of the physiological limitations. KinoHaptics is built to ensure that no injuries are induced during the rehabilitation period. The persuasive nature of the system allows for personal goal-setting, progress tracking, and most importantly life-style compatibility. The system was evaluated under laboratory conditions, involving 14 users. Results show that KinoHaptics is highly convenient to use, and the vibro-haptic feedback is intuitive, accurate, and has shown to prevent accidental injuries. Also, results show that KinoHaptics is persuasive in nature as it supports behavior change and habit building. The successful acceptance of KinoHaptics, an automated, wearable, haptic assisted, physio-therapeutic system proves the need and future-scope of automated physio-therapeutic systems for self-care and behavior change. It also proves that such systems incorporated with vibro-haptic feedback encourage strong adherence to the physiotherapy program; can have profound impact on the physiotherapy experience resulting in higher acceptance rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. www.unity3d.com

  2. www.microsoft.com/en-us/kinectforwindows/meetkinect/default.aspx

  3. www.sparkfun.com/products/12577

  4. www.pjrc.com

  5. Graphical User Interface

  6. www.unity3d.com

  7. www.unity3d.com

  8. http://32feet.codeplex.com/

  9. https://msdn.microsoft.com/en-us/library/microsoft.kinect.aspx

  10. http://srl.tamu.edu

References

  1. Lucke, K.T., Coccia, H., Goode, J.S., and Lucke, J.F., Quality of life in spinal cord injured individuals and their caregivers during the initial 6 months following rehabilitation. Qual. Life Res. 13(1):97–110, 2004.

    Article  PubMed  Google Scholar 

  2. Bassett, S.F., The assessment of patient adherence to physiotherapy rehabilitation. N. Z. J. Physiother. 31 (2):60–66, 2003.

    Google Scholar 

  3. Hong, Y., Development of icanfit: A mobile device application to promote physical activity and access to health information among older cancer survivors. In: 142nd APHA Annual Meeting and Exposition (November 15-November 19, 2014), APHA (2014)

  4. Goldberg, D.W., Cockburn, M.G., Hammond, T.A., Jacquez, G.M., Janies, D., Knoblock, C., Kuhn, W., and Pultar, E., Raubal, M.: Envisioning a future for a spatial-health cybergis marketplace. In: Proceedings of the Second ACM SIGSPATIAL International Workshop on the Use of GIS in Public Health, ACM, pp. 27–30 (2013)

  5. Bartley, J., Forsyth, J., Pendse, P., Xin, D., Brown, G., Hagseth, P., Agrawal, A., Goldberg, D.W., and Hammond, T.: World of workout: a contextual mobile rpg to encourage long term fitness. In: Proceedings of the Second ACM SIGSPATIAL International Workshop on the Use of GIS in Public Health, ACM, pp. 60–67 (2013)

  6. Rajanna, V., Lara-Garduno, R., Behera, D.J., Madanagopal, K., Goldberg, D., and Hammond, T.: Step up life: a context aware health assistant. In: Proceedings of the Third ACM SIGSPATIAL International Workshop on the Use of GIS in Public Health, ACM, pp. 21–30 (2014)

  7. Prasad, M., Taele, P., Goldberg, D., and Hammond, T.A.: Haptimoto: Turn-by-turn haptic route guidance interface for motorcyclists. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, pp. 3597–3606 (2014)

  8. Prasad, M., Russell, M., Hammond, T.A., et al., Designing vibrotactile codes to communicate verb phrases. ACM Trans. Multimed. Comput. Commun. Appl. 11(1s):11, 2014.

  9. Prasad, M., Russell, M., and Hammond, T.A., et al.: A user centric model to design tactile codes with shapes and waveforms. In: Haptics Symposium (HAPTICS), 2014 IEEE, IEEE, pp. 597–602 (2014)

  10. Ryan, M.M. Handbook of US Labor Statistics: Employment, Earnings, Prices. Productivity, and Other Labor Data: Rowman & Littlefield, 2013.

    Google Scholar 

  11. Chang, C.-Y., Lange, B., Zhang, M., Koenig, S., Requejo, P., Somboon, N., Sawchuk, A., and Rizzo, A., et al.: Towards pervasive physical rehabilitation using microsoft kinect. In: Pervasive Computing Technologies for Healthcare (PervasiveHealth), 2012 6th International Conference on, IEEE, pp. 159–162 (2012)

  12. Lange, B., Chang, C.-Y., Suma, E., Newman, B., Rizzo, A.S., and Bolas, M.: Development and evaluation of low cost game-based balance rehabilitation tool using the microsoft kinect sensor. In: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, IEEE, pp. 1831–1834 (2011)

  13. Chang, Y.-J., Chen, S.-F., and Huang, J.-D., A kinect-based system for physical rehabilitation: A pilot study for young adults with motor disabilities. Res. Dev. Disabil. 32(6):2566–2570, 2011.

    Article  PubMed  Google Scholar 

  14. Bo, A., Hayashibe, M., and Poignet, P.: Joint angle estimation in rehabilitation with inertial sensors and its integration with kinect. In: EMBC’11: 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, pp. 3479–3483 (2011)

  15. Yeh, S.-C., Hwang, W.-Y., Huang, T.-C., Liu, W.-K., Chen, Y.-T., and Hung, Y.-P.: A study for the application of body sensing in assisted rehabilitation training. In: Computer, Consumer and Control (IS3C), 2012 International Symposium on, IEEE, pp. 922–925 (2012)

  16. Kitsunezaki, N., Adachi, E., Masuda, T., and Mizusawa, J.-i.: Kinect applications for the physical rehabilitation. In: Medical Measurements and Applications Proceedings (MeMeA), 2013 IEEE International Symposium on, IEEE, pp. 294–299 (2013)

  17. Weiss, P.L., Rand, D., Katz, N., and Kizony, R., Video capture virtual reality as a flexible and effective rehabilitation tool. J. Neuroeng. Rehabil. 1(1):12, 2004.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kizony, R., Raz, L., Katz, N., Weingarden, H., and Weiss, P.L.T., Video-capture virtual reality system for patients with paraplegic spinal cord injury. J. Rehabil. Res. Dev. 42(5):595, 2005.

    Article  PubMed  Google Scholar 

  19. Sveistrup, H., Journal of neuroengineering and rehabilitation. J. Neuroeng. Rehabil. 1:10, 2004.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Feintuch, U., Raz, L., Hwang, J., Josman, N., Katz, N., Kizony, R., Rand, D., Rizzo, A.S., Shahar, M., and Yongseok, J., et al., Integrating haptic-tactile feedback into a video-capture-based virtual environment for rehabilitation. CyberPsychology & Behavior 9(2):129–132, 2006.

    Article  Google Scholar 

  21. Guevara, D., Vietri, G., Prabakar, M., and Kim, J.-H.: Robotic exoskeleton system controlled by kinect and haptic sensors for physical therapy. In: Biomedical Engineering Conference (SBEC), 2013 29th Southern, IEEE, pp. 71–72 (2013)

  22. Boian, R.F., Deutsch, J.E., Lee, C.S., Burdea, G.C., and Lewis, J.: Haptic effects for virtual reality-based post-stroke rehabilitation. In: Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2003. HAPTICS 2003. Proceedings. 11th Symposium on, IEEE, pp. 247–253 (2003)

  23. Sadihov, D., Migge, B., Gassert, R., and Kim, Y.: Prototype of a vr upper-limb rehabilitation system enhanced with motion-based tactile feedback. In: World Haptics Conference (WHC), 2013, IEEE, pp. 449–454 (2013)

  24. Mäenpää, H., Salokorpi, T., Jaakkola, R., Blomstedt, G., Sainio, K., Merikanto, J., and von Wendt, L., Follow-up of children with cerebral palsy after selective posterior rhizotomy with intensive physiotherapy or physiotherapy alone. Neuropediatrics 34(2):67–71, 2003.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank members of the Sketch Recognition LabFootnote 10 and Dr. Daniel Goldberg for their support in the ideation of this paper. We would also like to thank TAMU students David Turner, Raniero A. Lara-Garduno, Stephanie Valentine, Seth Polsley, Kaushik Sinha and Larry Powell; IAP members George Wu and Frank Gia from General Motors, Deian Tabakov from Schlumberger, Matt Lineberger from Pariveda Solutions, and Chris Curran from PricewaterhouseCoopers for their feedback. Lastly we would like to thank the Texas A & M department of Computer Science and Engineering for funding this project as well as Dr. Da Silva, our department head, for support throughout the semester.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vijay Rajanna or Tracy Hammond.

Additional information

This article is part of the Topical Collection on Patient Facing Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajanna, V., Vo, P., Barth, J. et al. KinoHaptics: An Automated, Wearable, Haptic Assisted, Physio-therapeutic System for Post-surgery Rehabilitation and Self-care. J Med Syst 40, 60 (2016). https://doi.org/10.1007/s10916-015-0391-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0391-3

Keywords

Navigation