Skip to main content

Advertisement

Log in

VehiHealth: An Emergency Routing Protocol for Vehicular Ad Hoc Network to Support Healthcare System

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Survival of a patient depends on effective data communication in healthcare system. In this paper, an emergency routing protocol for Vehicular Ad hoc Network (VANET) is proposed to quickly forward the current patient status information from the ambulance to the hospital to provide pre-medical treatment. As the ambulance takes time to reach the hospital, ambulance doctor can provide sudden treatment to the patient in emergency by sending patient status information to the hospital through the vehicles using vehicular communication. Secondly, the experienced doctors respond to the information by quickly sending a treatment information to the ambulance. In this protocol, data is forwarded through that path which has less link breakage problem between the vehicles. This is done by calculating an intersection value I v a l u e for the neighboring intersections by using the current traffic information. Then the data is forwarded through that intersection which has minimum I v a l u e . Simulation results show VehiHealth performs better than P-GEDIR, GyTAR, A-STAR and GSR routing protocols in terms of average end-to-end delay, number of link breakage, path length, and average response time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bhoi, S.K., and Khilar, P.M., Vehicular communication: a survey. IET Netw. 3(3):204–217, 2013.

    Article  Google Scholar 

  2. Li, F., and Wang, Y., Routing in vehicular ad hoc networks: A survey. IEEE Veh. Technol. Mag. 2(2):12–22, 2007.

    Article  Google Scholar 

  3. Zeadally, S., Hunt, R., Chen, Y.S., Irwin, A., and Hassan, A., Vehicular ad hoc networks (VANETS): status, results, and challenges. Telecommun. Syst. 50(4):217–241, 2012.

    Article  Google Scholar 

  4. Sichitiu, M.L., and Kihl, M., Inter-vehicle communication systems: a survey. IEEE Commun. Surv. Tutorials 10(2):88–105, 2008.

    Article  Google Scholar 

  5. Schoch, E., Kargl, F., Weber, M., and Leinmuller, T., Communication patterns in VANETs. IEEE Commun. Mag. 46(11):119–125, 2008.

    Article  Google Scholar 

  6. Toor, Y., Muhlethaler, P., and Laouiti, A., Vehicle ad hoc networks: Applications and related technical issues. IEEE Commun. Surv. Tutorials 10(3):74–88, 2008.

    Article  Google Scholar 

  7. Booysen, M.J., Zeadally, S., and Van Rooyen, G.J., Survey of media access control protocols for vehicular ad hoc networks. IET commun. 5(11):1619–1631, 2011.

    Article  Google Scholar 

  8. Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., and Weil, T., Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Commun. Surv. Tutorials 13(4):584–616.6 , 2011.

    Article  Google Scholar 

  9. Harri, J., Filali, F., and Bonnet, C., Mobility models for vehicular ad hoc networks: a survey and taxonomy. IEEE Commun. Surv. Tutorials 11(4):19–41, 2009.

    Article  Google Scholar 

  10. Hafeez, K.A., Zhao, L., Ma, B., and Mark, J.W., Performance Analysis and Enhancement of the DSRC for VANET’s Safety Applications. IEEE Trans. Veh. Technol. 62(7):3069–3083 , 2013.

    Article  Google Scholar 

  11. Kenney, J.B., Dedicated short-range communications (DSRC) standards in the United States. Proc. IEEE 99(7):1162–1182, 2011.

    Article  Google Scholar 

  12. Buchenscheit, A., Schaub, F., Kargl, F., and Weber, M.: A VANET-based emergency vehicle warning system. In: Vehicular Networking Conference (VNC 2009), (1-8) (2009)

  13. Tachakra, S., Wang, X.H., Istepanian, R.S., and Song, Y.H., Mobile e-health: the unwired evolution of telemedicine. Telemed. J. E-health 9(3):247–257, 2003.

    Article  PubMed  Google Scholar 

  14. Mandellos, G.J., Lymperopoulos, D.K., Koukias, M.N., Tzes, A., Lazarou, N., and Vagianos, C.: A novel mobile telemedicine system for ambulance transport. Design and evaluation. In: 26th Annual International Conference of the IEEE in Engineering in Medicine and Biology Society, Vol. 2, pp. 3080–3083 (2004)

  15. Xiao, Y., Gagliano, D., LaMonte, M., Hu, P., Gaasch, W., Gunawadane, R., and Mackenzie, C., Design and evaluation of a real-time mobile telemedicine system for ambulance transport Work reported here was partially supported by National Library of Medicine. J. High Speed Netw. 9(1):47–56 , 2000.

    Google Scholar 

  16. Cho, G.Y., Lee, S.J., and Lee, T.R., An optimized compression algorithm for real-time ECG data transmission in wireless network of medical information systems. J. Med. Syst. 39(1):1– 8, 2015.

    Article  Google Scholar 

  17. Heslop, L., Weeding, S., Dawson, L., Fisher, J., and Howard, A., Implementation issues for mobile-wireless infrastructure and mobile health care computing devices for a hospital ward setting. J. Med. Syst. 34(4):509–518, 2010.

    Article  PubMed  Google Scholar 

  18. Jovanov, E., and Milenkovic, A., Body area networks for ubiquitous healthcare applications: opportunities and challenges. J. Med. Syst. 35(5):1245–1254, 2011.

    Article  PubMed  Google Scholar 

  19. Preve, N., Ubiquitous healthcare computing with sensor grid enhancement with data management system (SEGEDMA). J. Med. Syst. 35(6):1375–1392, 2011.

    Article  PubMed  Google Scholar 

  20. Rafe, V., and Hajvali, M., A Reliable Architectural Style for Designing Pervasive Healthcare Systems. J. Med. Syst. 38(9):1–10, 2014.

    Article  Google Scholar 

  21. Lee, C.C., Hsu, C.W., Lai, Y.M., and Vasilakos, A., An enhanced mobile-healthcare emergency system based on extended chaotic maps. J. Med. Syst. 37(5):1–12, 2013.

    Article  Google Scholar 

  22. Takeuchi, R., Harada, H., Masuda, K., Ota, G. I., Yokoi, M., Teramura, N., and Saito, T., Field testing of a remote controlled robotic tele-echo system in an ambulance using broadband mobile communication technology. J. Med. Syst. 32(3):235–242, 2008.

    Article  PubMed  Google Scholar 

  23. Li, S.H., Cheng, K.A., Lu, W.H., and Lin, T.C., Developing an active emergency medical service system based on WiMAX technology. J. Med. Syst. 36(5):3177–3193, 2012.

    Article  PubMed  Google Scholar 

  24. Lin, C.F., Mobile telemedicine: A survey study. J. Med. Syst. 36(2):511–520, 2012.

    Article  PubMed  Google Scholar 

  25. Faust, O., Shetty, R., Sree, S.V., Acharya, S., Acharya, R., Ng, E.Y.K., and Suri, J., Towards the systematic development of medical networking technology. J. Med. Syst. 35(6):1431–1445, 2011.

    Article  PubMed  Google Scholar 

  26. Tian, Y., Zhou, T.S., Wang, Y., Zhang, M., and Li, J.S., Design and development of a mobile-based system for supporting emergency triage decision making. J. Med. Syst. 38(6):1–10 , 2014.

    Article  Google Scholar 

  27. Ahnn, J.H., and Potkonjak, M., mhealthmon: Toward energy-efficient and distributed mobile health monitoring using parallel offloading. J. Med. Syst. 37(5):1–11, 2013.

    Article  Google Scholar 

  28. Xiong, W., Bair, A., Sandrock, C., Wang, S., Siddiqui, J., and Hupert, N., Implementing telemedicine in medical emergency response: concept of operation for a regional telemedicine hub. J. Med. Syst. 36(3):1651–1660, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Zapata, B.C., Fernnndez-Alemn, J.L., Idri, A., and Toval, A., Empirical studies on usability of mHealth apps: A systematic literature review. J. Med. Syst. 39(2):1– 19, 2015.

    Article  PubMed  Google Scholar 

  30. Pattichis, C.S., Kyriacou, E., Voskarides, S., Pattichis, M.S., Istepanian, R., and Schizas, C.N., Wireless telemedicine systems: an overview. IEEE Antennas Propag. Mag. 44(2):143–153, 2002.

    Article  Google Scholar 

  31. Andrew, R., An evaluation of pre-hospital communication between ambulances and an accident and emergency department. J. Telemed. Telecare 9(1):35–37, 2003.

    Article  Google Scholar 

  32. Barua, M., Liang, X., Lu, R., and Shen, X.S., RCare: Extending Secure Health Care to Rural Area Using VANETs. Mob. Netw. Appl.,1–13, 2013.

  33. Ren, Y., Pazzi, R.W.N., and Boukerche, A., Monitoring patients via a secure and mobile healthcare system. IEEE Wirel. Commun. 17(1):59–65, 2010.

    Article  Google Scholar 

  34. Lin, Y.W., Chen, Y.S., and Lee, S.L., Routing Protocols in Vehicular Ad Hoc Networks: A Survey and Future Perspectives. J. Inf. Sci. Eng. 26(3):913–932, 2010.

    Google Scholar 

  35. Tsiachris, S., Koltsidas, G., and Pavlidou, F.N., Junction-based geographic routing algorithm for vehicular ad hoc networks. Wirel. Pers. Commun. 71(2):955–973, 2013.

    Article  Google Scholar 

  36. Jerbi, M., Senouci, S.M., Rasheed, T., and Ghamri-Doudane, Y., Towards efficient geographic routing in urban vehicular networks. IEEE Trans. Veh. Technol. 58(9):5048–5059 , 2009.

    Article  Google Scholar 

  37. Seet, B.C., Liu, G., Lee, B.S., Foh, C.H., Wong, K.J., and Lee, K.K.: A-STAR: A mobile ad hoc routing strategy for metropolis vehicular communications. Networking Technologies, Services, and Protocols; Performance of Computer and Communication Networks; Mobile and Wireless Communications (NETWORKING)(989–999) (2004)

  38. Lochert, C., Hartenstein, H., Tian, J., Fussler, H., Hermann, D., and Mauve, M.: A routing strategy for vehicular ad hoc networks in city environments. In: Proceedings of IEEE Intelligent Vehicles Symposium, (IEEE 2003), pp. 156–161 (2003)

  39. Karp, B., and Kung, H.T.: GPSR: Greedy perimeter stateless routing for wireless networks. In: Proceedings of the 6th annual international conference on Mobile computing and networking (ICMCN 2000), pp. 243–254 (2000)

  40. Chen, Y.S., Lin, Y.W., and Pan, C.Y., DIR: diagonal-intersection-based routing protocol for vehicular ad hoc networks. Telecommun. Syst. 46(4):299–316, 2011.

    Article  Google Scholar 

  41. Chou, L.-D., Yang, J.-Y., Hsieh, y.-C., Chang, D.-C., and Tung, C.-F., Intersection-based routing protocol for VANETs. Wirel. Pers. Commun. 60(1):105–124, 2011.

    Article  Google Scholar 

  42. Raw, R.S., and Das, S., Performance analysis of P-GEDIR protocol for vehicular ad hoc network in urban traffic environments. Wirel. Pers. Commun. 68(1):65–78, 2013.

    Article  Google Scholar 

  43. Liu, C., Shu, Y., Yang, O., Xia, Z., and Xia, R., SDR: A Stable Direction-Based Routing for Vehicular Ad Hoc Networks. Wirel. Pers. Commun. 73(3):1289–1308, 2013.

    Article  Google Scholar 

  44. El-Masri, S., and Basema, S., An Emergency System to Improve Ambulance Dispatching, Ambulance Diversion and Clinical Handover Communication-A Proposed Model. J. Med. Syst. 36(6):3917–3923, 2012.

    Article  PubMed  Google Scholar 

  45. Pavlopoulos, S., Kyriacou, E., Berler, A., Dembeyiotis, S., and Koutsouris, D., A novel emergency telemedicine system based on wireless communication technology-AMBULANCE. IEEE Trans. Inf. Technol. Biomed. 2(4):261–267 , 1998.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Bhoi.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhoi, S.K., Khilar, P.M. VehiHealth: An Emergency Routing Protocol for Vehicular Ad Hoc Network to Support Healthcare System. J Med Syst 40, 65 (2016). https://doi.org/10.1007/s10916-015-0420-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0420-2

Keywords

Navigation