Skip to main content

Advertisement

Log in

Effects of Reprocessing on Acrylonitrile–Butadiene–Styrene and Additives

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Acrylonitrile–butadiene–styrene (ABS) is one of the most extensively used engineering polymers. It is necessary to study the recycling of ABS because of environmental, economic and energy reasons. In this study, an ABS resin was processed using a torque rheometer at different temperatures and for different numbers of cycles. Pyrolysis gas chromatography mass spectrometry (Py-GC/MS) was used to study the effects of the processing parameters on additives. Fourier transform infrared spectroscopy, hydrogen nuclear magnetic resonance spectroscopy, and gel permeation chromatography (GPC) were used to analyse the structural changes in the resin. GPC results showed that after processing at 290 °C using the torque rheometer, large size soluble polymeric components increased. The increase in the large size soluble polymeric components after processing at 290 °C was probably related to the crosslinking reactions in the grafted polybutadiene. Furthermore, chemical analysis of the ABS resin samples after multiple extrusion cycles in a twin-screw extruder indicated that reprocessing considerably affected the ABS resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Teixeira FDM, Peres ACD, Gomes TS, Visconte LLY, Pacheco EBAV (2021) A review on the applicability of life cycle assessment to evaluate the technical and environmental properties of waste electrical and electronic equipment. J Polym Environ 29:1333–1349. https://doi.org/10.1007/s10924-020-01966-7

    Article  CAS  Google Scholar 

  2. Jaidev K, Biswal M, Mohanty S, Nayak SK (2021) Sustainable waste management of engineering plastics generated from E-waste: a critical evaluation of mechanical, thermal and morphological properties. J Polym Environ 29:1763–1776. https://doi.org/10.1007/s10924-020-01998-z

    Article  CAS  Google Scholar 

  3. Casale A, Salvatore O, Pizzigoni G (1975) Measurement of aging effects of ABS polymers. Polym Eng Sci 15:286–293

    Article  CAS  Google Scholar 

  4. Eguiazábal JI, Nazábal J (1990) Reprocessing polycarbonate/acrylonitrile-butadiene-styrene blends: influence on physical properties. Polym Eng Sci 30:527–531. https://doi.org/10.1002/pen.760300905

    Article  Google Scholar 

  5. Kim JK, Kang CK (1995) Basic studies on recycling of ABS resin. Polym-Plast Technol Eng 34:875–890. https://doi.org/10.1080/03602559508012182

    Article  CAS  Google Scholar 

  6. Boldizar A, Möller K (2003) Degradation of ABS during repeated processing and accelerated ageing. Polym Degrad Stabil 81:359–366. https://doi.org/10.1016/S0141-3910(03)00107-1

    Article  CAS  Google Scholar 

  7. Bai XJ, Isaac DH, Smith K (2007) Reprocessing acrylonitrile-butadiene-styrene plastics: structure-property relationships. Polym Eng Sci 47:120–130. https://doi.org/10.1002/pen.20681

    Article  CAS  Google Scholar 

  8. Salari D, Ranjbar H (2008) Study on the recycling of ABS resins: simulation of reprocessing and thermo-oxidation. Iran Polym J 17:599–610

    CAS  Google Scholar 

  9. Karahaliou EK, Tarantili PA (2009) Stability of ABS compounds subjected to repeated cycles of extrusion processing. Polym Eng Sci 49:2269–2275. https://doi.org/10.1002/pen.21480

    Article  CAS  Google Scholar 

  10. Karahaliou EK, Tarantili PA (2009) Preparation of poly(acrylonitrile-butadiene-styrene)/montmorillonite nanocomposites and degradation studies during extrusion reprocessing. J Appl Polym Sci 113:2271–2281. https://doi.org/10.1002/app.30158

    Article  CAS  Google Scholar 

  11. Pérez JM, Vilas JL, Laza JM, Arnáiz S, Mijangos F, Bilbao E, León LM (2010) Effect of reprocessing and accelerated weathering on ABS properties. J Polym Environ 18:71–78. https://doi.org/10.1007/s10924-009-0154-7

    Article  CAS  Google Scholar 

  12. Peydro MA, Parres F, Crespo JE, Navarro R (2013) Recovery of recycled acrylonitrile-butadiene-styrene, through mixing with styrene-ethylene/butylene-styrene. J Mater Process Technol 213:1268–1283. https://doi.org/10.1016/j.jmatprotec.2013.02.012

    Article  CAS  Google Scholar 

  13. Scaffaro R, Botta L, Di Benedetto G (2012) Physical properties of virgin-recycled ABS blends: effect of post-consumer content and of reprocessing cycles. Eur Polym J 48:637–648. https://doi.org/10.1016/j.eurpolymj.2011.12.018

    Article  CAS  Google Scholar 

  14. Wang J, Li YC, Song JF, He MY, Song JJ, Xia K (2015) Recycling of acrylonitrile-butadiene-styrene (ABS) copolymers from waste electrical and electronic equipment (WEEE), through using an epoxy-based chain extender. Polym Degrad Stabil 112:167–174. https://doi.org/10.1016/j.polymdegradstab.2014.12.025

    Article  CAS  Google Scholar 

  15. Li YC, Wu XL, Song JF, Li JF, Shao Q, Cao N, Lu N, Guo ZH (2017) Reparation of recycled acrylonitrile-butadiene-styrene by pyomellitic dianhydride: reparation performance evaluation and property analysis. Polymer 124:41–47. https://doi.org/10.1016/j.polymer.2017.07.042

    Article  CAS  Google Scholar 

  16. Zhan ZM, He HZ, Zhu ZW, Xue B, Wang GZ, Chen M, Xiong CT (2019) Blends of rABS and SEBS: influence of in-situ compatibilization on the mechanical properties. Materials 12:2352. https://doi.org/10.3390/ma12152352

    Article  CAS  PubMed Central  Google Scholar 

  17. Bai X, Stein BK, Smith K, Isaac DH (2012) Effects of reprocessing on additives in ABS plastics, detected by gas chromatography/mass spectrometry. Prog Rubber Plast Res 28:1–14

    CAS  Google Scholar 

  18. Yang R, Zhao JH, Liu Y (2013) Oxidative degradation products analysis of polymer materials by pyrolysis gas chromatography-mass spectrometry. Polym Degrad Stabil 98:2466–2472. https://doi.org/10.1016/j.polymdegradstab.2013.05.018

    Article  CAS  Google Scholar 

  19. Pentimalli M, Capitani D, Ferrando A, Ferri D, Ragni P, Segre AL (2000) Gamma irradiation of food packaging materials: an NMR study. Polymer 41:2871–2881. https://doi.org/10.1016/S0032-3861(99)00473-5

    Article  CAS  Google Scholar 

  20. Bai XJ, Wu Z, Feng N (2012) Degradation of ABS in ABS/CaCO3 composites during reprocessing. Adv Mater Res 455–456:845–850. https://doi.org/10.4028/www.scientific.net/AMR.455-456.845

    Article  CAS  Google Scholar 

  21. Shapi MM, Riekkola ML (1992) Chemical ionization mass spectrometry and gas chromatographic identification of some nitrogen‐containing volatile compounds from large‐scale pyrolysis of poly (acrylonitrile‐butadiene‐styrene) plastics. J Microcol Sep 4:35–43. https://doi.org/10.1002/mcs.1220040108

  22. Bozi J, Czégény Z, Blazsó M (2008) Conversion of the volatile thermal decomposition products of polyamide-6, 6 and ABS over Y zeolites. Thermochim Acta 472:84–94. https://doi.org/10.1016/j.tca.2008.03.018

    Article  CAS  Google Scholar 

  23. Beißmann S, Stiftinger M, Grabmayer K, Wallner G, Nitsche D, Buchberger W (2013) Monitoring the degradation of stabilization systems in polypropylene during accelerated aging tests by liquid chromatography combined with atmospheric pressure chemical ionization mass spectrometry. Polym Degrad Stabil 98:1655–1661. https://doi.org/10.1016/j.polymdegradstab.2013.06.015

    Article  CAS  Google Scholar 

  24. Signoret C, Edo M, Lafon D, Caro-Bretelle AS, Lopez-Cuesta JM, Ienny P, Perrin D (2020) Degradation of styrenic plastics during recycling: impact of reprocessing photodegraded material on aspect and mechanical properties. J Polym Environ 28:2055–2077. https://doi.org/10.1007/s10924-020-01741-8

    Article  CAS  Google Scholar 

  25. Cardoso IN, Ranzan T, Kurek AP, Sellin N (2020) Recycling of chrome plated ABS parts pickled with nitric acid free solution. J Polym Environ 28:826–833. https://doi.org/10.1007/s10924-019-01645-2

    Article  CAS  Google Scholar 

  26. Balart R, Sánchez L, López J, Jiménez A (2006) Kinetic analysis of thermal degradation of recycled polycarbonate/acrylonitrile-butadiene-styrene mixtures from waste electric and electronic equipment. Polym Degrad Stabil 91:527–534. https://doi.org/10.1061/j.polymdergradstab.2005.01.055

    Article  CAS  Google Scholar 

  27. Balart R, López J, García D, Salvador MD (2005) Recycling of ABS and PC from electrical and electronic waste. Effect of miscibility and previous degradation on final performance of industrial blends. Eur Polym J 41:2150–2160. https://doi.org/10.1016/j.eurpolymj.2005.04.001

    Article  CAS  Google Scholar 

  28. Saviello D, Pouyet E, Toniolo L, Cotte M, Nevin A (2014) Synchrotron-based FTIR microspectroscopy for the mapping of photo-oxidation and additives in acrylonitrile-butadiene-styrene model samples and historical objects. Anal Chim Acta 843:59–72. https://doi.org/10.1016/j.aca.2014.07.021

    Article  CAS  PubMed  Google Scholar 

  29. Zhao ZF, Wang ZY, Zhang CQ, Wang YZ, Li ZS, Hu YM, Xiao XS (2014) Polar polystyrene-isoprene-styrene copolymers with long polybutadiene branches. J Appl Polym Sci 131:40303. https://doi.org/10.1002/app.40303

    Article  CAS  Google Scholar 

  30. Zhang J, Li L, Boonkerd K, Kim JK (2014) Formation of SBS triblock copolymers using waste soybean oil as coupling agent. J Appl Polym Sci 131:40684. https://doi.org/10.1002/app.40684

    Article  CAS  Google Scholar 

  31. Zhang ZJ, Zhang LN, Li Y, Xu HD (2006) Styrene-butadiene-styrene/montmorillonite nanocomposites synthesized by anionic polymerization. J Appl Polym Sci 99:2273–2278. https://doi.org/10.1002/app.22768

    Article  CAS  Google Scholar 

  32. Xicohtencatl-Serrano H, García-Leiner M, Cabrera-Ortiz A, Herrera-Nájera R (2014) Synthesis and characterization of poly (styrene-b-[(butadiene)1–x-(ethylene-co-butylene)x]-b-styrene) star-like molecular polymers produced by partial hydrogenation of SBS. Polym Eng Sci 54:2332–2344. https://doi.org/10.1002/pen.23796

    Article  CAS  Google Scholar 

  33. Turner RR, Carlson DW, Altenau AG (1974) Determination of ungrafted rubber in ABS polymers. J Elastom Plast 6:94–102

    Article  Google Scholar 

  34. Shiundu PM, Remsen EE, Giddings JC (1996) Isolation and characterization of polymeric and particulate components of acrylonitrile-butadiene-styrene (ABS) plastics by thermal field-flow fractionation. J Appl Polym Sci 60:1695–1707. https://doi.org/10.1002/(SICI)1097-4628(19960606)60:10%3c1695::AID-APP22%3e3.0.CO;2-2

    Article  CAS  Google Scholar 

  35. Vilaplana F, Karlsson S, Ribes-Greus A (2007) Changes in the microstructure and morphology of high-impact polystyrene subjected to multiple processing and thermo-oxidative degradation. Eur Polym J 43:4371–4381. https://doi.org/10.1016/j.eurpolymj.2007.07.017

    Article  CAS  Google Scholar 

  36. Vilaplana F, Ribes-Greus A, Karlsson S (2006) Degradation of recycled high-impact polystyrene. Simulation by reprocessing and thermo-oxidation. Polym Degrad Stabil 91:2163–2170. https://doi.org/10.1016/j.polymdegradstab.2006.01.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the following people for their assistance: Keith Smith at Cardiff University and David H. Isaac at Swansea University in United Kingdom; Shan Hu and her students, Yifan Chen, et al. at China University of Geosciences; Wenyi Chen at Wuhan University of Technology; Hong Cheng at Huazhong University of Science and Technology; Yingjie Shi and Haiyan Liu at Beijing Center for Physical and Chemical Analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojuan Bai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Liang, P., Zhang, M. et al. Effects of Reprocessing on Acrylonitrile–Butadiene–Styrene and Additives. J Polym Environ 30, 1803–1819 (2022). https://doi.org/10.1007/s10924-021-02314-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02314-z

Keywords

Navigation