Skip to main content
Log in

A Dynamic Model of the Proteins that Form the Initial Iron-Sulfur Cluster Biogenesis Machinery in Yeast Mitochondria

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The assembly of iron-sulfur clusters (ISCs) in eukaryotes involves the protein Frataxin. Deficits in this protein have been associated with iron inside the mitochondria and impair ISC biogenesis as it is postulated to act as the iron donor for ISCs assembly in this organelle. A pronounced lack of Frataxin causes Friedreich’s Ataxia, which is a human neurodegenerative and hereditary disease mainly affecting the equilibrium, coordination, muscles and heart. Moreover, it is the most common autosomal recessive ataxia. High similarities between the human and yeast molecular mechanisms that involve Frataxin have been suggested making yeast a good model to study that process. In yeast, the protein complex that forms the central assembly platform for the initial step of ISC biogenesis is composed by yeast frataxin homolog, Nfs1–Isd11 and Isu. In general, it is commonly accepted that protein function involves interaction with other protein partners, but in this case not enough is known about the structure of the protein complex and, therefore, how it exactly functions. The objective of this work is to model the protein complex in order to gain insight into structural details that end up with its biological function. To achieve this goal several bioinformatics tools, modeling techniques and protein docking programs have been used. As a result, the structure of the protein complex and the dynamic behavior of its components, along with that of the iron and sulfur atoms required for the ISC assembly, have been modeled. This hypothesis will help to better understand the function and molecular properties of Frataxin as well as those of its ISC assembly protein partners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FRDA:

Friedreich’s Ataxia

ISC:

Iron-sulfur cluster

Yfh1:

Yeast frataxin homolog 1

PDB:

Protein Data Bank

PLP:

Pyridoxal phosphate

VAST:

Vector alignment search tool

TO:

Totally opened

TC:

Totally closed

References

  1. Adam AC, Bornhövd C, Prokisch H, Neupert W, Hell K (2006) EMBO J 25(1):174–183

    Article  CAS  Google Scholar 

  2. Adinolfi S, Iannuzzi C, Prischi F, Pastore C, Iametti S, Martin SR, Bonomi F, Pastore A (2009) Nat Struct Mol Biol 16(4):390–396. doi:10.1038/nsmb.1579

    Article  CAS  Google Scholar 

  3. Amela I, Delicado P, Gómez A, Bonàs Sl, Querol E, Cedano J (2010) BMC Struct Biol 10:37

    Article  Google Scholar 

  4. Ausiello G, Cesareni G, Helmer-Citterich M (1997) Proteins 28(4):556–567

    Article  CAS  Google Scholar 

  5. Barras F, Loiseau L, Py B (2005) Adv Microb Physiol 50:41–101

    Article  CAS  Google Scholar 

  6. Barrientos A (2003) IUBMB Life 55(2):83–95

    Article  CAS  Google Scholar 

  7. Bencze KZ, Kondapalli KC, Cook JD, McMahon S, Millan-Pacheco C, Pastor N, Stemmler TL (2006) Crit Rev Biochem Mol Biol 41(5):269–291

    Article  CAS  Google Scholar 

  8. Bennett-Lovsey RM, Herbert AD, Sternberg MJE, Kelley LA (2008) Proteins 70(3):611–625

    Article  CAS  Google Scholar 

  9. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28(1):235–242

    Article  CAS  Google Scholar 

  10. Bradford JR, Westhead DR (2005) Bioinformatics 21(8):1487–1494

    Article  CAS  Google Scholar 

  11. Bridwell-Rabb J, Winn AM, Barondeau DP (2011) Biochemistry 50(33):7265–7274

    Article  CAS  Google Scholar 

  12. Bulteau AL, O’Neill HA, Kennedy MC, Ikeda-Saito M, Isaya G, Szweda LI (2004) Science 305(5681):242–245

    Article  CAS  Google Scholar 

  13. Camacho CJ, Zhang C (2005) Bioinformatics (Oxford, England) 21(10):2534–2536

    Article  CAS  Google Scholar 

  14. Campanella A, Rovelli E, Santambrogio P, Cozzi A, Taroni F, Levi S (2009) Hum Mol Genet 18(1):1–11. doi:10.1093/hmg/ddn308

    Article  CAS  Google Scholar 

  15. Campuzano V, Montermini L, Moltò MD, Pianese L, Cossée M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Caà± izares J, Koutnikova H, Bidichandani SI, Gellera C, Brice A, Trouillas P, De Michele G, Filla A, De Frutos R, Palau F, Patel PI, Di Donato S, Mandel JL, Cocozza S, Koenig M, Pandolfo M (1996) Science (New York, NY) 271(5254):1423–1427

  16. Champ PC, Camacho CJ (2007) Nucleic Acids Res 35(Web Server issue):W556–W560

    Article  Google Scholar 

  17. Chen OS, Hemenway S, Kaplan J (2002) Proc Natl Acad Sci USA 99(19):12321–12326

    Article  CAS  Google Scholar 

  18. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Nucleic Acids Res 31(13):3497–3500

    Article  CAS  Google Scholar 

  19. Chivian D, Kim DE, Malmström L, Bradley P, Robertson T, Murphy P, Strauss CEM, Bonneau R, Rohl CA, Baker D (2003) Proteins 53(Suppl 6):524–533

    Article  CAS  Google Scholar 

  20. Chivian D, Kim DE, Malmström L, Schonbrun J, Rohl CA, Baker D (2005) Proteins 61(Suppl 7):157–166

    Article  CAS  Google Scholar 

  21. Cook JD, Bencze KZ, Jankovic AD, Crater AK, Busch CN, Bradley PB, Stemmler AJ, Spaller MR, Stemmler TL (2006) Biochemistry 45(25):7767–7777

    Article  CAS  Google Scholar 

  22. Cook JD, Kondapalli KC, Rawat S, Childs WC, Murugesan Y, Dancis A, Stemmler TL (2010) Biochemistry 49(40):8756–8765

    Article  CAS  Google Scholar 

  23. Correia AR, Adinolfi S, Pastore A, Gomes CM (2006) Biochem J 398(3):605–611

    Article  CAS  Google Scholar 

  24. Correia AR, Wang T, Craig EA (2010) Gomes CuM. Biochem J 426(2):197–203

    Article  CAS  Google Scholar 

  25. de Vries SJ, van Dijk ADJ, Krzeminski Ml, van Dijk M, Thureau A, Hsu V, Wassenaar T, Bonvin AMJJ (2007) Proteins 69(4):726–733

    Article  Google Scholar 

  26. de Vries SJ, van Dijk M, Bonvin AMJJ (2010) Nat Protoc 5(5):883–897

    Article  Google Scholar 

  27. Delatycki MB, Camakaris J, Brooks H, Evans-Whipp T, Thorburn DR, Williamson R, Forrest SM (1999) Ann Neurol 45(5):673–675

    Article  CAS  Google Scholar 

  28. Dhe-Paganon S, Shigeta R, Chi YI, Ristow M, Shoelson SE (2000) J Biol Chem 275(40):30753–30756

    Article  CAS  Google Scholar 

  29. Dominguez C, Boelens R, Bonvin AMJJ (2003) J Am Chem Soc 125(7):1731–1737

    Article  CAS  Google Scholar 

  30. Emekli U, Schneidman-Duhovny D, Wolfson HJ, Nussinov R, Haliloglu T (2008) Proteins 70(4):1219–1227

    Article  CAS  Google Scholar 

  31. Fischer D, Barret C, Bryson K, Elofsson A, Godzik A, Jones D, Karplus KJ, Kelley LA, MacCallum RM, Pawowski K, Rost B, Rychlewski L, Sternberg M (1999) Proteins Suppl 3:209–217

    Google Scholar 

  32. Fiser A, Sali A (2003) Methods Enzymol 374:461–491

    Article  CAS  Google Scholar 

  33. Foury F, Pastore A, Trincal M (2007) EMBO Rep 8(2):194–199

    Article  CAS  Google Scholar 

  34. Frazzon J, Fick JR, Dean DR (2002) Biochem Soc Trans 30(4):680–685

    Article  CAS  Google Scholar 

  35. Gerber J, Lill R (2002) Mitochondrion 2(1–2):71–86

    Article  CAS  Google Scholar 

  36. Gerber J, Muhlenhoff U, Lill R (2003) EMBO Rep 4(9):906–911

    Article  CAS  Google Scholar 

  37. Gibrat JF, Madej T, Bryant SH (1996) Curr Opin Struct Biol 6(3):377–385

    Article  CAS  Google Scholar 

  38. Gonzalez-Cabo P, Vazquez-Manrique RP, Garcia-Gimeno MA, Sanz P, Palau F (2005) Hum Mol Genet 14(15):2091–2098

    Article  CAS  Google Scholar 

  39. Guex N, Peitsch MC (1997) Electrophoresis 18(15):2714–2723

    Article  CAS  Google Scholar 

  40. Halperin I, Ma B, Wolfson H, Nussinov R (2002) Proteins 47(4):409–443

    Article  CAS  Google Scholar 

  41. He Y, Alam SL, Proteasa SV, Zhang Y, Lesuisse E, Dancis A, Stemmler TL (2004) Biochemistry 430(51):16254–16262

    Article  Google Scholar 

  42. Higgins DG, Sharp PM (1988) Gene 73(1):237–244

    Article  CAS  Google Scholar 

  43. Johnson DC, Dean DR, Smith AD, Johnson MK (2005) Annu Rev Biochem 74:247–281

    Article  CAS  Google Scholar 

  44. Karlberg T, Schagerlöf U, Gakh O, Park S, Ryde U, Lindahl M, Leath K, Garman E, Isaya G, Al-Karadaghi S (2006) Structure 14(10):1535–1546

    Article  CAS  Google Scholar 

  45. Kelley LA, MacCallum RM, Sternberg MJ (2000) J Mol Biol 299(2):499–520

    Article  CAS  Google Scholar 

  46. Kim DE, Chivian D, Baker D (2004) Nucleic Acids Res 32(Web Server issue):W526–W531

    Article  CAS  Google Scholar 

  47. Knight SA, Kim R, Pain D, Dancis A (1999) Am J Hum Genet 64(2):365–371

    Article  CAS  Google Scholar 

  48. Krebs WG, Gerstein M (2000) Nucleic Acids Res 28(8):1665–1675

    Article  CAS  Google Scholar 

  49. Kuntal BK, Aparoy P, Reddanna P (2010) BMC Res Notes 3:226

    Article  Google Scholar 

  50. Lambert C, Leonard N, De Bolle X, Depiereux E (2002) Bioinformatics 18(9):1250–1256

    Article  CAS  Google Scholar 

  51. Li H, Gakh O, Smith DY 4th, Isaya G (2009) J Biol Chem 284(33):21971–21980

    Article  CAS  Google Scholar 

  52. Lill R (2009) Nature 460(7257):831–838

    Article  CAS  Google Scholar 

  53. Lill R, Muhlenhoff U (2006) Annu Rev Cell Dev Biol 22:457–486

    Article  CAS  Google Scholar 

  54. Maiti R, Van Domselaar GH, Zhang H, Wishart DS (2004) Nucleic Acids Res 32(Web Server issue):W590–W594

    Article  CAS  Google Scholar 

  55. Mansy SS, Cowan JA (2004) Acc Chem Res 37(9):719–725

    Article  CAS  Google Scholar 

  56. Martelli A, Wattenhofer-Donzé M, Schmucker Sp, Bouvet S, Reutenauer L, Puccio Hln (2007) Hum Mol Genet 16(22):2651–2658

    Article  CAS  Google Scholar 

  57. McGuffin LJ, Bryson K, Jones DT (2000) Bioinformatics 16(4):404–405

    Article  CAS  Google Scholar 

  58. Muhlenhoff U, Gerber J, Richhardt N, Lill R (2003) EMBO J 22(18):4815–4825

    Article  Google Scholar 

  59. Neuvirth H, Raz R, Schreiber G (2004) J Mol Biol 338(1):181–199

    Article  CAS  Google Scholar 

  60. Palma PN, Krippahl L, Wampler JE, Moura JJ (2000) Proteins 39(4):372–384

    Article  CAS  Google Scholar 

  61. Pandolfo M (2009) J Neurol 256(Suppl 1):3–8

    Article  Google Scholar 

  62. Pandolfo M, Pastore A (2009) J Neurol 256(Suppl 1):9–17

    Article  CAS  Google Scholar 

  63. Pastore C, Adinolfi S, Huynen MA, Rybin V, Martin S, Mayer M, Bukau B, Pastore A (2006) Structure (London, England: 1993) 14(5):857–867. doi:10.1016/j.str.2006.02.010

    Article  CAS  Google Scholar 

  64. Pedretti A, Villa L, Vistoli G (2002) J Mol Graph Model 21(1):47–49

    Article  CAS  Google Scholar 

  65. Pedretti A, Villa L, Vistoli G (2003) Theor Chem Acc Theory Comput Model (Theoretica Chimica Acta) 109(4):229–232

    CAS  Google Scholar 

  66. Pedretti A, Villa L, Vistoli G (2004) J Comput Aided Mol Des 18(3):167–173

    Article  CAS  Google Scholar 

  67. Prieto C, De Las Rivas J (2006) Nucleic Acids Res 34(Web Server issue):W298–W302

    Article  CAS  Google Scholar 

  68. Prischi F, Giannini C, Adinolfi S, Pastore A (2009) FEBS J 276(22):6669–6676

    Google Scholar 

  69. Prischi F, Konarev PV, Iannuzzi C, Pastore C, Adinolfi S, Martin SR, Svergun DI, Pastore A (2010) Nat Commun 1(7):95

    Article  Google Scholar 

  70. Puccio H, Simon D, Cossee M, Criqui-Filipe P, Tiziano F, Melki J, Hindelang C, Matyas R, Rustin P, Koenig M (2001) Nat Genet 27(2):181–186

    Article  CAS  Google Scholar 

  71. Qin S, Zhou H-X (2007) Bioinformatics 23(24):3386–3387

    Article  CAS  Google Scholar 

  72. Ramazzotti A, Vanmansart V, Foury F (2004) FEBS Lett 557(1–3):215–220

    Article  CAS  Google Scholar 

  73. Raulfs EC, O’Carroll IP, Dos Santos PC, Unciuleac M-C, Dean DR (2008) Proc Natl Acad Sci USA 105(25):8591–8596

    Article  CAS  Google Scholar 

  74. Rawat S, Stemmler TL (2011) Chemistry 17(3):746–753

    Article  CAS  Google Scholar 

  75. Ritchie DW (2008) Curr Protein Pept Sci 9(1):1–15

    Article  CAS  Google Scholar 

  76. Ritchie DW, Kozakov D, Vajda S (2008) Bioinformatics (Oxford, England) 24(17):1865–1873

    Article  CAS  Google Scholar 

  77. Rotkiewicz P, Skolnick J (2008) J Comput Chem 29(9):1460–1465

    Article  CAS  Google Scholar 

  78. Rouault TA, Tong WH (2005) Nat Rev Mol Cell Biol 6(4):345–351

    Article  CAS  Google Scholar 

  79. Rouault TA, Tong WH (2008) Trends Genet (TIG) 24(8):398–407

    Article  CAS  Google Scholar 

  80. Schmucker Sp, Martelli A, Colin F, Page A, Wattenhofer-Donzé M, Reutenauer L, Puccio Hln (2011) PLoS ONE 6(1):e16199

    Article  CAS  Google Scholar 

  81. Schwimmer C, Rak M, Lefebvre-Legendre L, Duvezin-Caubet Sp, Plane G, di Rago J-P (2006) Biotechnol J 1(3):270–281

    Article  CAS  Google Scholar 

  82. Selbach B, Earles E, Dos Santos PC (2010) Biochemistry 49(40):8794–8802

    Article  CAS  Google Scholar 

  83. Seznec H, Simon D, Bouton C, Reutenauer L, Hertzog A, Golik P, Procaccio V, Patel M, Drapier JC, Koenig M, Puccio H (2005) Hum Mol Genet 14(4):463–474

    Article  CAS  Google Scholar 

  84. Shan Y, Napoli E, Cortopassi G (2007) Hum Mol Genet 16(8):929–941

    Article  CAS  Google Scholar 

  85. Shi R, Proteau A, Villarroya M, Moukadiri Il, Zhang L, Trempe J-F, Matte A, Armengod ME, Cygler M (2010) PLoS Biol 8(4):e1000354

    Article  Google Scholar 

  86. Shi Y, Ghosh MC, Tong W-H, Rouault TA (2009) Hum Mol Genet 18(16):3014–3025

    Article  CAS  Google Scholar 

  87. Shimomura Y, Wada K, Fukuyama K, Takahashi Y (2008) J Mol Biol 383(1):133–143

    Article  CAS  Google Scholar 

  88. Smith MG, Snyder M (2006) Current protocols in human genetics, pp 15.6.1–15.6.8

  89. Stehling O, Smith PM, Biederbick A, Balk J, Lill R, Mühlenhoff U (2007) Methods Mol Biol (Clifton, NJ) 372:325–342

    Article  CAS  Google Scholar 

  90. Thompson MA. ArgusLab 4.0.1. Planaria Software LLC. http://www.arguslab.com

  91. Tirupati B, Vey JL, Drennan CL, Bollinger JM Jr (2004) Biochemistry 43(38):12210–12219

    Article  CAS  Google Scholar 

  92. Tsai C-L, Barondeau DP (2010) Biochemistry 49(43):9132–9139

    Article  CAS  Google Scholar 

  93. Tsai C-L, Bridwell-Rabb J, Barondeau DP (2011) Biochemistry 50(29):6478–6487

    Article  CAS  Google Scholar 

  94. Vakser IA, Kundrotas P (2008) Curr Pharm Biotechnol 9(2):57–66

    Article  CAS  Google Scholar 

  95. Wang T, Craig EA (2008) Binding of yeast frataxin to the scaffold for Fe–S cluster biogenesis, Isu. J Biol Chem 283(18):12674–12679

    Article  CAS  Google Scholar 

  96. Wiedemann N, Urzica E, Guiard B, Müller H, Lohaus C, Meyer HE, Ryan MT, Meisinger C, Mühlenhoff U, Lill R, Pfanner N (2006) EMBO J 25(1):184–195

    Google Scholar 

  97. Yoon H, Golla R, Lesuisse E, Pain J, Donald JE, Lyver ER, Pain D, Dancis A (2012) Biochem J 441(1):473–480. doi:10.1042/bj20111637

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Grants BIO2007-67904-C02-01, BFU2010-22209-C02-01, MTM2010-14887 from the MCYT (Ministerio de Ciencia y Tecnología, Spain), from the Centre de Referència de R + D de Biotecnologia de la Generalitat de Catalunya, from Fundació La Marató de TV3 101930/31/32/33 and from the Comisión Coordinadora del Interior (Uruguay). The authors thank Mr. Òscar Conchillo for his help with several protein analysis tools and for technical support. This manuscript has been corrected by Mr. Chuck Simmons, a native English-speaking Instructor of English of this University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Cedano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 509 kb)

Supplementary material 2 (PDF 763 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amela, I., Delicado, P., Gómez, A. et al. A Dynamic Model of the Proteins that Form the Initial Iron-Sulfur Cluster Biogenesis Machinery in Yeast Mitochondria. Protein J 32, 183–196 (2013). https://doi.org/10.1007/s10930-013-9475-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-013-9475-4

Keywords

Navigation