Skip to main content

Advertisement

Log in

Amplification of DNA in sediment cores to detect historic Planktothrix occurrence in three Norwegian lakes

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

The past 50 years have been marked by overabundance of cyanobacteria in many lakes. One cyanobacterium in particular, Planktothrix, produces large blooms that affect phytoplankton diversity and presents human health concerns. Historical information on Planktothrix, however, is limited. More background information on this taxon would be useful for water management. Archival DNA in lake sediment has shown increasing promise for providing insights into historical lake conditions. In an effort to identify Planktothrix DNA in sediments, we developed a set of primers to amplify the DNA, using sequences from the non-ribosomal peptide synthetase gene cluster, ociB, which codes for the oligopeptide class cyanopeptolin. Four primer sets were designed, using a single forward primer and four separate reverse primers that span a specific sequence fragment between 50 and 383 base pairs in length. This enabled us to assess the recovery of Planktothrix DNA in sediment cores from three lakes that differed with respect to watershed characteristics, sedimentation rate, chemistry and organic matter content. The method proved to be sensitive for detection of Planktothrix ociB in sediment from these lakes. Long fragments were found in sediment deposited over the last 20 years, whereas shorter DNA fragments were amplified from samples taken over the entire length of the cores. Highest DNA concentrations were found in the lake with highest levels of aluminum and magnesium in the sediment, suggestive of clay-rich deposits. The lake with the highest organic matter content and lowest sedimentation rate also had the lowest concentrations of Planktothrix DNA. In this organic-rich sediment, however, the shortest fragment primers amplified Planktothrix DNA from sediment deposited over the last 300 years. This research shows the potential for DNA in sediment archives to yield information about past cyanobacteria presence in a variety of lakes, and indicates that it is a useful tool for identifying the presence of Planktothrix, an important nuisance cyanobacterium in some lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alric B, Perga ME (2011) Effects of production, sedimentation and taphonomic processes on the composition and size structure of sedimenting cladoceran remains in a large deep subalpine lake: paleo-ecological implications. Hydrobiologia 676:101–116

    Article  Google Scholar 

  • Altschul S, Watten G, Miller W, Meyers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  Google Scholar 

  • Barta JL, Monroe C, Teisberg JE, Winters M, Flanigan K, Kemp BM (2014) One of the key characteristics of ancient DNA, low copy number, may be a product of its extraction. J Archaeol Sci 46:281–289

    Article  Google Scholar 

  • Battarbee RW, Morley D, Bennion H, Simpson GL, Hughes M, Bauere V (2011) A palaeolimnological meta-database for assessing the ecological status of lakes. J Paleolimnol 45:405–414

    Article  Google Scholar 

  • Bennion H, Battarbee R, Sayer C, Simpson G, Davidson T (2011) Defining reference conditions and restoration targets for lake ecosystems using palæolimnology: a synthesis. J Paleolimnol 45:533–544

    Article  Google Scholar 

  • Boere AC, Rijpstra WIC, DeLange GJ, Damsté JSS, Coolen MJL (2011) Preservation potential of ancient plankton DNA in pleistocene marine sediments. Geobiology 9:377–393

    Google Scholar 

  • Cohen A (2003) Paleolimnology: the history and evolution of lake systems. Oxford University Press, New York, USA

    Google Scholar 

  • Coolen MJ, Overmann J (2007) 217000-year-old DNA sequences of green sulfur bacteria in Mediterranean sapropels and their implications for the reconstruction of the paleoenvironment. Environ Microbiol 9:238–249

    Article  Google Scholar 

  • Coolen MJL, Muyzer G, Rijpstra WIC, Schouten S, Volkman JK, Damsté JSS (2004) Combined DNA and lipid analyses of sediments reveal changes in Holocene haptophyte and diatom populations in an Antarctic lake. Earth Planet Sci Lett 223:225–239

    Article  Google Scholar 

  • Domaizon I, Savichtcheva O, Debroas D, Arnaud F, Villar C, Pignol C, Alrie B, Perga ME (2013) DNA form lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages. Biogeosciences 10:3817–3838

    Article  Google Scholar 

  • Epp LS, Stoof-Leichsenring KR, Trauth MH, Tiedemann R (2011) Molecular profiling of diatom assemblages in tropical lake sediments using taxon-specific PCR and Denaturing High-Performance Liquid Chromatography (PCR-DHPLC). Mol Ecol Resour 11:842–853

    Article  Google Scholar 

  • Håkanson L, Jansson M (1983) Lake sedimentology. The Blackburn Press, Caldwell

    Book  Google Scholar 

  • Hansen AJ, Mitchell DL, Wiuf C, Paniker L, Brand TB, Binladen J, Gilichinsky DA, Rønn R, Willerslev E (2006) Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments. Genetics 173:1175–1179

    Article  Google Scholar 

  • Ishida S, Ohtsuki H, Awano T, Tsugeki NK, Makino W, Suyama Y, Urabe J (2012) DNA extraction and amplification methods for ephippial cases of Daphnia resting eggs in lake sediments: a novel approach for reconstructing zooplankton population structure from the past. Limnology 13:261–267

    Article  Google Scholar 

  • Jacquet S, Briand JF, Leboulanger C, Avois-Jacquet C, Oberhaus L, Tassin B, Vinçon-Leite B, Paolini G, Druart JC, Anneville O, Humbert JF (2005) The proliferation of the toxic cyanobacterium Planktothrix rubescens following restoration of the largest natural French lake (Lac du Bourget). Harmful Algae 4:651–672

    Article  Google Scholar 

  • Kurmayer R, Christiansen G, Fastner J, Börner T (2004) Abundance of active and inactive microcystine genotypes in populations of the toxic cyanobacterium Planktothrix spp. Environ Microbiol 6:831–841

    Article  Google Scholar 

  • Lejzerowicz F, Esling P, Majewski W, Szczucinski W, Decelle J, Obadia C, Arbizu PM, Pawlowski J (2013) Ancient DNA complements microfossil record in deep-sea subsurface sediments. Biol Lett 9:20130283. doi:10.1098/rsbl.2013.0283

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2013) vegan: community ecology package. R package version 2.0-7. http://CRAN.R-project.org/package=vegan

  • Ostermaier V, Kurmayer R (2009) Distribution and abundance of nontoxic mutants of cyanobacteria in lakes of the Alps. Microb Ecol 58:323–333

    Article  Google Scholar 

  • Ostermaier V, Schanz F, Köster O, Kurmayer R (2012) Stability of toxin gene proportion in red-pigmented populations of cyanobacterium Planktothrix during 29 years of re-oligotrophication of Lake Zürich. BMC Biol 10:100

    Article  Google Scholar 

  • Paerl HW, Hall NS, Calandrino ES (2011) Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409:1739–1745

    Article  Google Scholar 

  • Pheiffer Madsen P, Sørensen J (1979) Validation of the lead-210 dating method. J Radioanal Chem 54:39–48

    Article  Google Scholar 

  • Rinta-Kanto JM, Saxton MA, DeBruyn JM, Smith JL, Marvin CH, Krieger KA, Sayler GS, Boyer GL, Wilhelm SW (2009) The diversity and distribution of toxigenic Microcystis spp. In present day and archived pelagic and sediment samples from Lake Erie. Harmful Algae 8:385–394

    Article  Google Scholar 

  • Rohrlack T, Edvardsen B, Skulberg R, Halstvedt CB, Utkilen HC, Ptacnik R, Skulberg OM (2008) Oligopeptide chemotypes of the toxic freshwater cyanobacterium Planktothrix can form subpopulation with dissimilar ecological traits. Limnol Oceanogr 53:1279–1293

    Article  Google Scholar 

  • Rounge TB, Rohrlack T, Kristensen T, Jakobsen KS (2008) Recombination and selection forces in cyanopeptolin NRPS operons from highly similar, but geographically remote Planktothrix strains. BMC Microbiol 8:141

    Article  Google Scholar 

  • Savichtcheva O, Debroas D, Kurmayer R, Villar C, Jenny JP, Arnaud F, Perga ME, Domaizon I (2011) Quantitative PCR enumeration of total/toxic Planktothrix rubescens and total cyanobacteria in preserved DNA isolated from lake sediments. Appl Environ Microb 77:8744–8753

    Article  Google Scholar 

  • Sogge H, Rohrlack T, Rounge TB, Sønstebø JH, Tooming-Klunderud A, Kristensen T, Jakobsen KS (2013) Gene flow, recombination, and selection in cyanobacteria: population structure of geographically related Planktothrix freshwater strains. Appl Environ Microbiol 79:508–515

    Article  Google Scholar 

  • Sønstebø JH, Rohrlack T (2011) Possible implication of chytrid parasitism for population subdivision in freshwater cyanobacteria of the genus Planktothrix. Appl Environ Microbiol 77:1344–1350

    Article  Google Scholar 

  • Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann CC, Willerslev E (2006) Power and limitations of the chloroplast trnL (UAA) interon for plant DNA barcoding. Nucleic Acids Res 35:e14

    Article  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

Download references

Acknowledgments

We thank Tom Andersen, Marc Angles d’Auriac, and Veronika Ostermaier for comments and discussion. Mark Brenner and two anonymous reviewers provided helpful input. This study was supported by an internal grant from the Norwegian University of Life Sciences, a grant from Haldenvassdraget, and an internal grant from the Norwegian Institute for Water Research (NIVA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia Kyle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyle, M., Haande, S., Sønstebø, J. et al. Amplification of DNA in sediment cores to detect historic Planktothrix occurrence in three Norwegian lakes. J Paleolimnol 53, 61–72 (2015). https://doi.org/10.1007/s10933-014-9807-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-014-9807-1

Keywords

Navigation