Skip to main content

Advertisement

Log in

Lake diatom responses to warming: reviewing the evidence

  • Frey-Deevey Invited Review
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Algae, the dominant primary producers in many aquatic ecosystems, are critical to global biogeochemical cycling, and changes in their abundance and composition can cascade throughout aquatic food webs. Diatoms often dominate the algal communities in many freshwater systems. Their population dynamics are affected by a variety of environmental variables, many of which are linked to changes in water column properties and habitat availability, which themselves can be linked to shifts in ice cover, length of the growing season, thermal stability and stratification, vertical mixing patterns, habitat alterations, and the availability of resources such as light and nutrients. Climate has strong moderating controls on all of these fundamental aquatic processes, which can directly and indirectly alter species composition, abundance and seasonal dynamics of both periphytic and planktonic diatoms. In this review, we examine the role that climate-mediated alterations in inter-related lake processes have played on diatom community composition, dynamics and size structure, with particular attention to the recent success of planktonic diatom species relative to heavier tychoplanktonic and small benthic diatoms. We focus primarily on paleolimnological records, but also reference a wide spectrum of limnological and physiological studies to review and discuss how climate-driven shifts in lake properties may affect diatom assemblage reorganization. Understanding the limnological and historical context of these often complex diatom changes is key to making scientifically defensible interpretations of paleolimnological records. We further evaluate the plausibility of alternative explanations (e.g. atmospheric nitrogen deposition) for the recent success of small cyclotelloid species by examining trends in these planktonic diatoms from a large number of sites. Using a weight-of-evidence approach, we conclude that recent climate change is the main driver that has led to ecological tipping points resulting in the recent success of small planktonic diatoms that have been reported in many aquatic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adrian R, Wilhelm S, Gerten D (2006) Life-history traits of lake plankton species may govern their phenological response to climate warming. Glob Change Biol 12:652–661

    Google Scholar 

  • Adrian R, Wilhelm S, Gerten D (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297

    Google Scholar 

  • Ampel L, Wohlfarth B, Risberg J, Veres D, Leng MJ, Tillman PK (2010) Diatom assemblage dynamics during abrupt climate change: the response of lacustrine diatoms to Dansgaard–Oeschger cycles during the last glacial period. J Paleolimnol 44:397–404

    Google Scholar 

  • Antoniades D, Crawley C, Douglas MSV, Pienitz R, Andersen D, Doran PT, Hawes I, Pollard W, Vincent WF (2007) Abrupt environmental change in Canada’s northernmost lake inferred from fossil diatom and pigment stratigraphy. Geophys Res Lett 34:L18708

    Google Scholar 

  • Antoniades D, Douglas MSV, Michelutti N, Smol JP (2014) Determining diatom ecotones and their relationship to terrestrial designations in the central Canadian Arctic islands. J Phycol 50:610–623. doi:10.1111/jpy.12195

    Google Scholar 

  • Arseneau K (2014) Acidification and climate warming: understanding the impact of multiple anthropogenic stressors on Adirondack (NY, USA) lakes. PhD dissertation, Queen’s University, Kingston, ON. https://qspace.library.queensu.ca/handle/1974/12172

  • Axford Y, Briner JP, Cooke CA, Francis DR, Michelutti N, Miller GH, Smol JP, Thomas EK, Wilson CR, Wolfe AP (2009) Recent changes in a remote Arctic lake are unique within the past 200,000 years. Proc Natl Acad Sci USA 106:18443–18446

    Google Scholar 

  • Baron JS, Rueth HM, Wolfe AM, Nydick KR, Allstott EJ, Minear JT, Moraska B (2000) Ecosystem responses to nitrogen deposition in the Colorado Front Range. Ecosystems 3:352–368

    Google Scholar 

  • Barrow JL, Jeziorski A, Rühland KM, Hadley KR, Smol JP (2014) Diatoms indicate that calcium decline, not acidification, explains recent cladoceran assemblage changes in south-central Ontario softwater lakes. J Paleolimnol 52:61–75

    Google Scholar 

  • Battarbee RW, Grytnes JA, Thompson R, Appleby PG, Catalan J, Korhola A, Birks HJB, Heegaard E, Lami A (2002) Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. J Paleolimnol 28:161–179

    Google Scholar 

  • Becker V, Huszar VLM, Naselli-Flores L, Padisák J (2008) Phytoplankton equilibrium phases during thermal stratification in a deep subtropical reservoir. Freshw Biol 53:952–963

    Google Scholar 

  • Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski P, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755

    Google Scholar 

  • Bergström A-K (2010) The use of TN:TP and DIN:TP ratios as indicators for phytoplankton nutrient limitation in oligotrophic lakes affected by N deposition. Aquat Sci 72:277–281

    Google Scholar 

  • Besonen MR, Patridge W, Bradley RS, Francus P, Stoner JS, Abbott MB (2008) A record of climate over the last millennium based on varved lake sediments from the Canadian High Arctic. The Holocene 18:169–180

    Google Scholar 

  • Bigelow NH, Brubaker LB, Edwards ME, Harrison SP, Prentice IC, Anderson PM, Andreev AA, Bartlein PJ, Christensen TR, Cramer W, Kaplan JO, Lozhkin AV, Matveyeva NV, Murray DF, McGuire AD, Razzhivin VY, Ritchie JC, Smith B, Walker DA, Gajewski K, Wolf V, Holmqvist BH, Igarashi Y, Kremenetskii K, Paus A, Pisaric MFJ, Volkova VS (2003) Climate change and Arctic ecosystems: 1. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present. J Geophys Res 108:8170. doi:10.1029/2002JD002558

    Google Scholar 

  • Bopp L, Aumont O, Cadule P, Alvain S, Gehlen M (2005) Response of diatoms distribution to global warming and potential implications: a global model study. Geophy Res Lett 32:L19606

    Google Scholar 

  • Bradbury JP (1988) A climatic-limnologic model of diatom succession for paleolimnological interpretation of varved sediments at Elk Lake, Minnesota. J Paleolimnol 1:115–131

    Google Scholar 

  • Bradley RS, Keimig FT, Diaz HF, Hardy DR (2009) Recent changes in freezing level heights in the tropics with implications for the degacierization of high mountain regions. Geophys Res Lett 36:L17701. doi:10.1029/2009GL037712

  • Bradshaw EG, Rasmussen P, Nielsen H, Anderson NJ (2005) Mid- to late-Holocene land-use change and lake development at Dallund Sø, Denmark: trends in lake primary production as reflected by algal and macrophyte remains. The Holocene 15:1130–1142

    Google Scholar 

  • Cahill KL, Gunn JM, Futter MN (2005) Modelling ice cover, timing of spring stratification, and end-of-season mixing depth in small Precambrian Shield lakes. Can J Fish Aquat Sci 62:2134–2142

    Google Scholar 

  • Carney HJ (1987) Field tests of interspecific resource-based competition among phytoplankton. Proc Natl Acad Sci USA 84:4148–4150

    Google Scholar 

  • Catalan J, Ventura M, Brancelj A, Granados I, Thies H, Nickus U, Korhola A, Lotter AF, Barbieri A, Stuchlik E, Lien L, Bitusik P, Buchaca T, Camarero L, Goudsmit GH, Kopáček J, Lemcke G, Livingstone DM, Muller B, Rautio M, Sisko M, Sorvari S, Sporka F, Strunecky O, Toro M (2002a) Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records. J Paleolimnol 28:25–46

    Google Scholar 

  • Catalan J, Pla S, RieradevallM Felip M, Ventura M, Buchaca T, Camarero L, Brancelj A, Appleby PG, Lami A, Grytnes A, Agusti-Panareda A, Thompson R (2002b) Lake Redó ecosystem response to an increasing warming in the Pyrenees during the twentieth century. J Paleolimnol 28:129–145

    Google Scholar 

  • Catalan J, Pla-Rabés S, Wolfe AP, Smol JP, Rühland KM, Anderson JN, Kopáč J, Stucklík E, Schmidt R, Koinig KA, Camarero L, Flower RJ, Heiri O, Kamenik C, Korhola A, Leavitt PR, Psenner R, Renberg I (2013) Global change revealed by palaeolimnological records from remote lakes: a review. J Paleolimnol 49:513–535

    Google Scholar 

  • Chapman WL, Walsh JE (1993) Recent variations of sea ice and air temperature in high latitudes. Bull Am Meteorol Soc 74:33–47

    Google Scholar 

  • Chen C, Zhao L, Zhu C, Wang J, Jiang J, Yang S (2014) Response of diatom community in Lugu Lake (Yunnan-Guizhou Plateau, China) to climate change over the past century. J Paleolimnol 51:357–373

    Google Scholar 

  • Chipman ML, Clarke GH, Clegg BF, Gregory-Eaves I, Hu FS (2009) A 2000 year record of climatic change at Ongoke Lake, southwest Alaska. J Paleolimnol 41:57–75

    Google Scholar 

  • Chu G, Liu J, Schettler G, Li J, Sun Q, Gu Z, Lu H, Liu Q, Liu T (2005) Sediment fluxes and varve formation in Sihailongwan, a maar lake from northeastern China. J Paleolimnol 34:311–324

    Google Scholar 

  • Clerk S, Hall R, Quinlan R, Smol JP (2000) Quantitative inferences of past hypolimnetic anoxia and nutrient levels from a Canadian Precambrian Shield lake. J Paleolimnol 23:319–336

    Google Scholar 

  • Cummings CM (2014) Changes in diatom assemblages in Adirondack (NY, USA) reference lakes since pre-industrial times. MSc thesis, Queen’s University, Kingston, ON. https://qspace.library.queensu.ca/handle/1974/12217

  • Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proc Nat Acad Sci USA. doi:10.1073/pnas.0902080106

    Google Scholar 

  • De Senerpont Domis LN, Elser JJ, Gsell AS, Huszar VLM, Ibelings BW, Jeppesen E, Kosten S, Mooij WM, Roland F, Sommer U, Van Donk E, Winder M, Lürling M (2013) Plankton dynamics under different climatic conditions in space and time. Freshw Biol 58:463–482

    Google Scholar 

  • DeColibus D (2013) Tabellaria flocculosa. In: Diatoms of the United States. http://westerndiatoms.colorado.edu/taxa/species/tabellaria_flocculosa

  • Devlin JE, Finkelstein SA (2011) Local physiographic controls on the responses of Arctic lakes to climate warming in Sirmilik National Park, Nunavut, Canada. J Paleolimnol 45:23–39

    Google Scholar 

  • Diaz HF, Eischeid JK, Duncan C, Bradley RS (2003) Variability of freezing levels, melting season indicators, and snow cover for selected high-elevation and continental regions in the last 50 years. Clim Change 59:33–52

    Google Scholar 

  • Diaz HF, Bradley RS, Ning L (2014) Climatic changes in mountain regions of the American Cordillera and the tropics: historical changes and future outlook. Arct Antarct Alp Res 46:735–743

    Google Scholar 

  • Diehl S, Berger S, Ptacnik R, Wild A (2002) Phytoplankton, light, and nutrients in a gradient of mixing depths: field experiments. Ecol 83:399–411

    Google Scholar 

  • Doubleday NC, Douglas MSV, Smol JP (1995) Paleoenvironmental studies of black carbon deposition in the High Arctic: a case study from Northern Ellesmere Island. Sci Tot Env 160(161):661–668

    Google Scholar 

  • Douglas MSV, Smol JP (2010) Freshwater diatoms as indicators of environmental change in the High Arctic. In: Smol JP, Stoermer EF (eds) The diatoms: applications for the environmental and earth sciences, 2nd edn. Cambridge University Press, Cambridge, pp 249–266

    Google Scholar 

  • Douglas MSV, Smol JP, Blake W Jr (1994) Marked post-18th century environmental change in high Arctic ecosystems. Science 266:416–419

    Google Scholar 

  • Edlund MB, Stoermer EF (1997) Ecological, evolutionary, and systematic significance of diatom life histories. J Phycol 33:897–918

    Google Scholar 

  • Elliott JA, Irish AE, Reynolds CS (2002) Predicting the spatial dominance of phytoplankton in a light limited and incompletely mixed eutrophic water column using PROTECH model. Freshw Biol 47:433–440

    Google Scholar 

  • Enache MD, Paterson AM, Cumming BF (2011) Changes in diatom assemblages since pre-industrial times in 40 lakes from the Experimental Lakes Area (northwestern Ontario, Canada). J Paleolimnol 46:1–15

    Google Scholar 

  • Fahnenstiel GL, Glime JM (1983) Subsurface chlorophyll maximum and associated Cyclotella pulse in Lake Superior. Int Rev Ges Hydrobiol 68:605–616

    Google Scholar 

  • Falkowski PG, Oliver MJ (2007) Mix and match: how climate selects phytoplankton. Nat Rev Microbiol 5:813–819

    Google Scholar 

  • Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–207

    Google Scholar 

  • Fallu M-A, Pienitz R, Walker IR, Lavoir M (2005) Paleolimnology of a shrub-tundra lake and response of aquatic and terrestrial indicators to climatic change in arctic Québec, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 215:183–203

    Google Scholar 

  • Fee EJ, Hecky RE, Kasian SEM, Cruikshank DR (1996) Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol Oceanogr 41:912–920

    Google Scholar 

  • Fenn ME, Baron JS, Allen EB, Rueth HM, Nydick KR, Geiser L, Bowman WD, Sickman JO, Meixner T, Johnson DW, Neitlich P (2003) Ecological effects of nitrogen deposition in the western United States. Bioscience 4:404–420

    Google Scholar 

  • Ferguson SH, Higdon JW, Chmelnitsky EG (2010) The rise of killer whales as a major Arctic predator. In: Ferguson SH, Loseto H, Mallory ML (eds) A Little Less Arctic: top predators in the world’s largest Northern Inland Sea, Hudson Bay. Springer, Dordrecht, pp 117–136

    Google Scholar 

  • Findlay DL, Kasian SEM, Stainton MP, Beaty K, Lyng M (2001) Climatic influences on algal populations of boreal forest lakes in the Experimental Lakes Area. Limnol Oceanogr 46:1784–1793

    Google Scholar 

  • Finkel ZV, Vaillancourt CJ, Irwin AJ, Reavie ED, Smol JP (2009) Environmental control of diatom community size structure varies across aquatic ecosystems. Proc R Soc B 276:1627–1634

    Google Scholar 

  • Forrest F, Reavie ED, Smol JP (2002) Comparing limnological changes associated with 19th century canal construction and other catchment disturbances in four lakes within the Rideau Canal system, Ontario, Canada. J Limnol 61:183–197

    Google Scholar 

  • Forsström L, Sorvari S, Korhola A, Rautio M (2005) Seasonality of phytoplankton in subarctic Lake Saanajärvi in NW Finnish Lapland. Pol Biol 28:846–861

    Google Scholar 

  • Forsström L, Sorvari S, Rautio M, Sonninen E, Korhola A (2007) Changes in physical and chemical limnology and plankton during the spring melt period in a subarctic lake. Internat Rev Hydrobiol 92:301–325

  • Friel CE, Finkelstein SA, Davis AM (2014) Relative importance of hydrological and climatic controls on Holocene paleoenvironments inferred using diatom and pollen records from a lake in the central Hudson Bay Lowlands, Canada. The Holocene 24:295–306

    Google Scholar 

  • Fritz SC (2008) Deciphering climatic history from lake sediments. J Paleolimnol 39:5–16

    Google Scholar 

  • Gagnon AS, Gough WA (2005) Climate change scenarios for the Hudson Bay region: an intermodal comparison. Clim Change 69:269–297

    Google Scholar 

  • Gaston AJ, Elliott KH (2014) Seabird diet changes in northern Hudson Bay, 1981–2013, reflect the availability of schooling prey. Mar Ecol Prog Ser 513:211–223

    Google Scholar 

  • Gaston AJ, Mallory ML, Gilchrist HG (2012) Populations and trends of Canadian Arctic seabirds. Polar Biol 35:1221–1232

    Google Scholar 

  • Gerten D, Adrian R (2002) Effects of climate warming, North Atlantic Oscillation, and El Niño-Southern Oscillation on thermal conditions and plankton dynamics in Northern Hemisphere lakes. Sci World 2:586–606

    Google Scholar 

  • Ginn BK, Cumming BF, Smol JP (2008) Tracking water quality changes related to human activities in Cape Breton Highlands National Park (Nova Scotia, Canada) using paleolimnological techniques. Verh Int Verein Limnol 30:242–246

    Google Scholar 

  • Gobiet A, Kotlarski S, Beniston M, Heinrich G, Rajczak J, Stoffel M (2014) 21st century climate change in the European Alps—a review. Sci Tot Environ 493:1138–1151

    Google Scholar 

  • Guilizzoni P, Levine SN, Manca M, Marchetto A, Lami A, Ambrosetti W, Brauer A, Gerli S, Carrara EA, Rolla A, Guzzella L, Vignati DAL (2012) Ecological effects of multiple stressors on a deep lake (Lago Maggiore, Italy) integrating neo and palaeolimnological approaches. J Limnol 71:1–22

    Google Scholar 

  • Guinder VA, Popovich CA, Molinero JC, Perillo ME (2010) Long-term changes in phytoplankton phenology and community structure in the Bahía Blanca Estuary, Argentina. Mar Biol 157:2703–2716

    Google Scholar 

  • Hadley KR, Paterson AM, Hall RI, Smol JP (2013) Effects of multiple stressors on lakes in south-central Ontario: 15 years of change in lakewater chemistry and sedimentary diatom assemblages. Aquat Sci 75:349–360

    Google Scholar 

  • Hadley KR, Paterson AM, Stainsby EA, Michelutti N, Yao H, Rusak JA, Ingram R, McConnell C, Smol JP (2014) Climate warming alters thermal stability but not stratification phenology in a small north-temperate lake. Hydrol Proc 28:6309–6319. doi:10.1002/hyp.10120

    Google Scholar 

  • Harris MA, Cumming BF, Smol JP (2006) Assessment of recent environmental changes in New Brunswick (Canada) lakes based on paleolimnological shifts in diatom species assemblages. Can J Bot 84:151–163

    Google Scholar 

  • Hawryshyn J, Rühland KM, Quinlan R, Smol JP (2012) Long-term water quality changes in a multiple-stressor system: a diatom-based paleolimnological study of Lake Simcoe (Ontario, Canada). Can J Fish Aquat Sci 69:24–40

    Google Scholar 

  • Hecky RE (1993) The eutrophication of Lake Victoria. Verhund Int Verein Limnol 25:39–48

    Google Scholar 

  • Hecky RE, Mugidde R, Ramlal PS, Talbot MR, Kling GW (2010) Multiple stressors cause rapid ecosystem change in Lake Victoria. Freshw Biol 55:19–42

    Google Scholar 

  • Herb W, Mohseni O, Stefan H (2005) Lake of the Woods shoreline erosion: analysis of historical shorelines, climate and lake level. University of Minnesota, Project Report No. 466, prepared for the Minnesota Pollution Control Agency, St. Paul, MN. http://conservancy.umn.edu/bitstream/113391/1/pr466.pdf

  • Hobæk A, Løvik JE, Rohrlack T, Moe SJ, Grung M, Bennion H, Clarke G, Piliposyan T (2012) Eutrophication, recovery and temperature in Lake Mjøsa: detecting trends with monitoring data and sediment records. Freshw Biol 57:1998–2014

    Google Scholar 

  • Hobbs WO, Telford RJ, Birks HJB, Saros JE, Hazewinkel RRO, Perren BB, Saulnier-Talbot É, Wolfe AP (2010) Quantifying recent ecological changes in remote lakes of North America and Greenland using sediment diatom assemblages. PLoS One 5:e10026. doi:10.1371/journal.pone.0010026

    Google Scholar 

  • Hobbs WO, Vinebrooke RD, Wolfe AP (2011) Biogeochemical responses of two alpine lakes to climate change and atmospheric deposition, Jasper and Banff National parks, Canadian Rocky Mountains. Can J Fish Aquat Sci 68:1480–1494

    Google Scholar 

  • Hochheim KP, Barber DG (2010) Atmospheric forcing of sea ice in Hudson Bay during the fall period, 1980–2005. J Geophys Res 115:C05009. doi:10.1029/2009JC005334

    Google Scholar 

  • Hochheim KP, Barber DG (2014) An update on the ice climatology of the Hudson Bay system. Arct Antarct Alpine Res 46:66–83

    Google Scholar 

  • Holtham AJ, Gregory-Eaves I, Pellatt MG, Selbie DT, Stewart L, Finney B, Smol JP (2004) The influence of flushing rates, terrestrial input and low salmon escapement densities on paleolimnological reconstructions of sockeye salmon (Oncorynchus nerka) nutrient dynamics in Alaska and British Columbia

  • Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Craco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P, Zhao-Liang Z (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35:75–139

    Google Scholar 

  • Huber K, Weckström K, Drescher-Schneider R, Knoll J, Schmidt J, Schmidt R (2010) Climate changes during the last glacial termination inferred from diatom-based temperatures and pollen in a sediment core from Längsee (Austria). J Paleolimnol 43:131–147

    Google Scholar 

  • Huisman J, Sommeijer B (2002) Maximal sustainable sinking velocity of phytoplankton. Mar Ecol Prog Ser 244:39–48

    Google Scholar 

  • Huisman J, Arrayás M, Ebert U, Sommeijer B (2002) How do sinking phytoplankton species manage to persist? Am Nat 159:245–254

    Google Scholar 

  • Huisman J, Sharples J, Stroom JM, Visser PM, Kardinaal WEA, Verspagen JMH, Sommeijer B (2004) Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85:2960–2970

    Google Scholar 

  • Huisman J, Thi NNP, Karl DM, Sommeijer B (2006) Reduced mixing generates oscillation and chaos in the oceanic deep chlorophyll maximum. Nature 439:322–325

    Google Scholar 

  • Hundey EJ (2014) Nitrate sources and lake response in high elevation lakes, Uinta Mountains, Utah. PhD dissertation, University of Western Ontario

  • Hundey EJ, Moser KA, Longstaffe FJ, Michelutti N, Hladyniuk R (2014) Recent changes in production in oligotrophic Uinta Mountain lakes, Utah, identified using paleolimnology. Limnol Oceanogr 59:1987–2001

    Google Scholar 

  • Hutchinson GE (1957) A treatise on limnology. Wiley, New York

    Google Scholar 

  • Hyatt CV, Paterson AM, Rühland KM, Smol JP (2011) Examining 20th century water quality and ecological changes in the Lake of the Woods, Ontario, Canada: a paleolimnological investigation. J Great Lakes Res 37:456–469

    Google Scholar 

  • IPCC (2007a) Climate change 2007—the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge

  • IPCC (2007b) North America. In: Climate change 2007: impacts, adaptation and vulnerability: contribution of working group II to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge

  • Jewson DH (1992) Size reduction, reproductive strategy and the life cycle of a centric diatom. Phil Trans R Soc B 335:191–213

    Google Scholar 

  • Jia Y, Yu G, He N, Zhan X, Fang H, Shen W, Zuo Y, Zhang D, Wang Q (2014) Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Sci Rep. doi:10.1038/srep03763

    Google Scholar 

  • Johnson B, Noble PJ, Howard K, Heyvaert A (2012) Diatom community changes in five sub-alpine mountain lakes in northern California. American Geophysical Union, Fall Meeting 2012, abstract #GC11A-0974. (2012AGUFMGC11A0974J- Bibliographic code)

  • Jones VJ, Birks HJB (2004) Lake-sediment records of recent environmental change on Svalbard: results of diatom analysis. J Paleolimnol 31:445–466

    Google Scholar 

  • Jones TD, Lawson IT, Reed JM, Wilson GP, Leng MJ, Gierga M, Bernasconi M, Smittenberg RH, Hajdas I, Bryant CL, Tzedakis PC (2013) Diatom-inferred late Pleistocene and Holocene palaeolimnological changes in Ioannina basin, northwest Greece. J Paleolimnol 49:185–204

    Google Scholar 

  • Julius ML, Theriot EC (2010) The diatoms: a primer. In: Smol JP, Stoermer EF (eds) The diatoms: applications for the environmental and earth sciences, 2nd ed. Cambridge University Press, Cambridge, pp 8–22

  • Karst-Riddoch TL, Pisaric MFJ, Smol JP (2005) Diatom responses to 20th century climate-related environmental changes in high-elevation mountain lakes of the northern Canadian Cordillera. J Paleolimnol 33:265–282

    Google Scholar 

  • Keatley BE, Douglas MSV, Smol JP (2008) Prolonged ice cover dampens diatom community responses to recent climatic change in High Arctic lakes. Arct Antarct Alp Res 40:364–372

    Google Scholar 

  • Kilham SS, Theriot EC, Fritz SC (1996) Linking planktonic diatoms and climate change in the large lakes of the Yellowstone ecosystem using resource theory. Limnol Oceanogr 41:1052–1062

    Google Scholar 

  • King JR, Shuter BJ, Zimmerman AP (1997) The response of the thermal stratification of South Bay (Lake Huron) to climatic variability. Can J Fish Aquat Sci 54:1873–1882

    Google Scholar 

  • Kirillin G, Leppäranta M, Terzhevik A, Granin N, Bernhardt J, Engelhardt C, Efremova T, Golosov S, Palshin N, Sherstyankin P, Zdorovennova G, Zdorovennov R (2012) Physics of seasonally ice-covered lakes: a review. Aquat Sci 74:659–682

    Google Scholar 

  • Kling HJ, Mugidde R, Hecky RE (2001) Recent changes in the phytoplankton community of Lake Victoria in response to eutrophication. In: Munawar M, Hecky RE (eds) Great Lakes of the world: food webs, health and integrity. Backhuys, Leiden, pp 47–66

    Google Scholar 

  • Kouraev AV, Semovski SV, Shimaraev MN, Mognard NM, Legrésy B, Rémy F (2007) The ice regime of Lake Baikal from historical and satellite data: relationship to air temperature, dynamical, and other factors. Limnol Oceanogr 52:1268–1286

    Google Scholar 

  • Laing TE, Pienitz R, Payette S (2002) Evaluation of limnological responses to recent environmental change and caribou activity in the Rivière George region, northern Québec, Canada. Arct Antarct Alp Res 34:454–464

    Google Scholar 

  • Lami A, Marchetto A, Musazzi S, Salerno F, Gianni T, Guilizzoni P, Rogora M, Tartari GA (2010) Chemical and biological response of two small lakes in the Khumbu Valley, Himalayas (Nepal) to short-term variability and climatic change as detected by long-term monitoring and paleolimnological methods. Hydrobiol 648:189–205

    Google Scholar 

  • Larsen J, Jones VJ, Eide W (2006) Climatically driven pH changes in two alpine lakes. J Paleolimnol 36:175–187

    Google Scholar 

  • Leavitt PR, Fritz SC, Anderson NJ, Baker PA, Blenckner T, Bunting L, Catalan J, Conley DJ, Hobbs WO, Jeppesen E, Korhola A, McGowan S, Rühland K, Rusak JA, Simpson GL, Solovieva N, Werne J (2009) Paleolimnological evidence of the effects on lakes of energy and mass transfer from climate and humans. Limnol Oceanogr 54:2330–2348

    Google Scholar 

  • Litchman E, Klausmeier CA, Miller JR, Schofield OM, Falkowski PG (2006) Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities. Biogeoscience 3:585–606

    Google Scholar 

  • Litchman E, Klausmeier CA, Schofield OM, Falkowsi PG (2007) The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol Lett 10:1170–1181

    Google Scholar 

  • Little JL, Hall RI, Quinlan R, Smol JP (2000) Past trophic status and hypolimnetic anoxia during eutrophication and remediation of Gravenhurst Bay, Ontario: comparison of diatoms, chironomids, and historical records. Can J Fish Aquat Sci 57:333–341

    Google Scholar 

  • Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang F (2013) Enhanced nitrogen deposition over China. Nature 494:459–462

    Google Scholar 

  • Livingstone DM (2003) Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim Change 57:205–225

    Google Scholar 

  • Lotter AF, Bigler C (2000) Do diatoms in the Swiss Alps reflect the length of ice-cover? Aquat Sci 62:125–141

    Google Scholar 

  • Lotter AF, Appleby PG, Bindler R, Dearing JA, Grytnes J-A, Hofmann W, Kamenik C, Lami A, Livingstone DM, Ohlendorf C, Rose N, Sturm M (2002) The sediment record of the past 200 years in a Swiss high-alpine lake: Hagelseewli (2339 m a.s.l.). J Paleolimnol 28:11–127

    Google Scholar 

  • Luckman BH, Wilson RJS (2005) Summer temperatures in the Canadian Rockies during the last millennium: a revised record. Clim Dyn 24:131–144

    Google Scholar 

  • Mallory ML, Loseto LL, Ferguson SH (2010) The future of Hudson Bay: new direction and research needs. In: Ferguson SH, Loseto H, Mallory ML (eds) A Little Less Arctic: Top predators in the world’s largest Northern Inland Sea, Hudson Bay. Springer, Dordrecht, pp 291–303

    Google Scholar 

  • Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Nat Acad Sci 105:13252–13257

    Google Scholar 

  • Margalef R (1978) Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta 1:493–509

    Google Scholar 

  • McCausland MA, Thompson PA, Blackburn SI (2002) The effect of changes in light availability caused by mixing on the growth of Anabaena circinalis (Nostocales, Cyanobacteria) and Aulacoseira sp. (Centrales, Bacillariophyceae). Phycologia 40:530–541

    Google Scholar 

  • Medeiros AS, Friel CE, Finkelstein SA, Quinlan R (2012) A high resolution multi-proxy record of pronounced recent environmental change at Baker Lake, Nunavut. J Paleolimnol 47:661–676

    Google Scholar 

  • Michelutti N, Douglas MSV, Smol JP (2003) Diatom response to recent climatic change in a high arctic lake (Char Lake, Cornwallis Island, Nunavut). Glob Plan Change 38:257–271

    Google Scholar 

  • Michelutti N, Hermanson MH, Smol JP, Dillon PJ, Douglas MSV (2007) Delayed response of diatom assemblages to sewage inputs in an Arctic lake. Aquat Sci 69:523–533

    Google Scholar 

  • Michelutti N, Wolfe AP, Cooke CC, Hobbs WO, Vuille M, Smol JP (2015) Climate change forces new ecological states in tropical Andean lakes. PLoS One 10(2):e0115338. doi:10.1371/journal.pone.0115338

    Google Scholar 

  • Morabito G, Oggiani A, Austoni M (2012) Resource ratio and human impact: how diatom assemblages in Lake Maggiore responded to oligotrophication and climatic variability. Hydrobiologia 698:47–60

    Google Scholar 

  • Morales E, Rosen B (2013) Fragilaria tenera. In: Diatoms of the United States. http://westerndiatoms.colorado.edu/taxa/species/fragiaria_tenera

  • Morales E, Rosen B, Spaulding S (2013) Fragilaria crotonensis. In: Diatoms of the United States. http://westerndiatoms.colorado.edu/taxa/species/fragilaria_crotonensis

  • O’Gorman PA, Singh MS (2013) Vertical structure of warming consistent with an upward shift in the middle and upper troposphere. Geophys Res Lett 40:1838–1842

    Google Scholar 

  • O’Reilly CM, Alin SR, Plisnier P-D, Cohen AS, McKee BA (2003) Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424:766–768

    Google Scholar 

  • Oliver DR, Corbet PS (1966) Operation Hazen: aquatic habitats in a High Arctic locality: the Hazen Camp Study Area, Ellesmere Island. N.W.T. Ottawa Department of National Defence, Ottawa

    Google Scholar 

  • Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58

    Google Scholar 

  • Panizzo VN, Mackay AW, Rose NL, Rioual P, Leng MJ (2013) Recent palaeolimnological change recorded in Lake Xiaolongwan, northeast China: climatic versus anthropogenic forcing. Quat Int 290–291:322–334

    Google Scholar 

  • Pannard A, Bormans M, Lagadeuc Y (2008) Phytoplankton species turnover controlled by physical forcing at different time scales. Can J Fish Aquat Sci 65:47–60

    Google Scholar 

  • Parker BR, Vinebrooke RD, Schindler DW (2008) Recent climate extremes alter alpine lake ecosystems. Proc Nat Acad Sci 35:12927–12931

    Google Scholar 

  • Pasciak WJ, Gavis J (1974) Transport limitation of nutrient uptake in phytoplankton. Limnol Oceanogr 19:881–888

    Google Scholar 

  • Paterson AM, Betts-Piper AA, Smol JP, Zeeb BA (2003) Diatom and chrysophyte algal response to long-term PCB contamination from a point-source in northern Labrador, Canada. Wat Air Soil Poll 145:377–393

    Google Scholar 

  • Paterson AM, Winter JG, Nicholls KH, Clark BJ, Ramcharan CW, Yan ND, Somers KM (2008) Long-term changes in phytoplankton composition in seven Canadian Shield lakes in response to multiple anthropogenic stressors. Can J Fish Aquat Sci 65:846–861

    Google Scholar 

  • Paterson AM, Keller W, Rühland KM, Jones FC, Winter JG (2014) An exploratory survey of summer water chemistry and plankton communities in lakes near the Sutton River, Hudson Bay Lowlands, Ontario, Canada. Arct Antarct Alp Res 46:121–138

    Google Scholar 

  • Peacock E, Derocher AE, Lunn NJ, Obbard ME (2010) Polar bear ecology and management in Hudson Bay in the face of climate change. In: Ferguson SH, Loseto H, Mallory ML (eds) A Little Less Arctic: top predators in the world’s largest Northern Inland Sea, Hudson Bay. Springer, Dordrecht, pp 93–115

    Google Scholar 

  • Perren BB, Bradley RS, Francus P (2003) Rapid lacustrine response to recent High Arctic warming: a diatom record from Sawtooth Lake, Ellesmere Island, Nunavut. Arct Antarct Alp Res 35:271–278

    Google Scholar 

  • Perren BB, Wolfe AP, Cooke CA, Kjær KH, Mazzucchi D, Steig EJ (2012) Twentieth-century warming revives the world’s northernmost lake. Geology 40:1003–1006

    Google Scholar 

  • Pienitz R, Vincent WF (2000) Effect of climate change relative to ozone depletion on UV exposure in subarctic lakes. Nature 404:484–487

    Google Scholar 

  • Pienitz R, Saulnier-Talbot E, Fallu M-A, Laing TE, Ponader K, Swadling K, Walker I (2004) Long-term climate stability in the Québec-Labrador (Canada) region: evidence from paleolimnological studies. ACIA international symposium on climate change in the Arctic, Reykjavik, Iceland, 9–12 November

  • Ponader K, Pienitz R, Vincent W, Gajewski K (2002) Limnological conditions in a subarctic lake (northern Québec, Canada) during the late Holocene: analysis based on fossil diatoms. J Paleolimnol 27:353–366

    Google Scholar 

  • Ptacnik R, Diehl S, Berger S (2003) Performance of sinking and nonsinking phytoplankton taxa in a gradient of mixing depths. Limnol Oceanogr 48:1903–1912

    Google Scholar 

  • Quinlan R, Hall RI, Paterson AM, Cumming BF, Smol JP (2008) Long-term assessments of ecological effects of anthropogenic stressors on aquatic ecosystems from paleoecological analyses: challenges to perspectives of lake management. Can J Fish Aquat Sci 65:933–944

    Google Scholar 

  • Raubitschek S, Lücke A, Schleser GH (1999) Sedimentation patterns of diatoms in Lake Holzmaar, Germany—(on the transfer of climate signals to biogenic silica oxygen isotope proxies). J Paleolimnol 21:437–448

    Google Scholar 

  • Rautio M, Sorvari S, Korhola A (2000) Diatom and crustacean zooplankton communities, their seasonal variability and representation in the sediments of subarctic Lake Saanajärvi. J Limnol 59:81–96

    Google Scholar 

  • Reavie ED, Barbiero RP (2013) Recent changes in abundance and cell size of pelagic diatoms in the North American Great Lakes. Phytotaxa 127:150–162

    Google Scholar 

  • Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S (2002) Towards a functional classification of the freshwater plankton. J Plank Res 24:417–428

    Google Scholar 

  • Rimet F, Druart J-C, Anneville O (2009) Exploring the dynamics of plankton diatom communities in Lake Geneva using emergent self-organizing maps (1974–2007). Ecol Informatics 4:99–110

    Google Scholar 

  • Rocha MR, Vasseur DA, Gaedke U (2012) Seasonal variations alter the impact of functional traits on plankton dynamics. PLoS ONE 7(12):e51257. doi:10.1371/journal.pone.0051257

    Google Scholar 

  • Rosén P, Cunningham L, Vonk J, Karlsson J (2009) Effects of climate on organic carbon and the ratio of planktonic to benthic primary producers in a subarctic lake during the past 45 years. Limnol Oceanogr 54:1723–1732

  • Round FE, Crawford RM, Mann DG (1990) The diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge

    Google Scholar 

  • Rouse WR (1991) Impacts of Hudson Bay on the terrestrial climate of the Hudson Bay Lowlands. Arct Antarct Alp Res 23:24–30

    Google Scholar 

  • Rühland, KM, Paterson AM, Keller, W, Michelutti N, Smol JP (2013) Global warming triggers the loss of a key Arctic refugium. Proc R Soc B 280:20131887. doi:10.1098/rspb.2013.1887

  • Rühland K, Priesnitz A, Smol JP (2003a) Paleolimnological evidence from diatoms for recent environmental changes in 50 lakes across Canadian arctic treeline. Arct Antarct Alp Res 35:110–123

    Google Scholar 

  • Rühland KM, Smol JP, Pienitz R (2003b) Ecology and spatial distributions of surface-sediment diatoms from 77 lakes in the subarctic Canadian treeline region. Can J Bot 81:57–73

    Google Scholar 

  • Rühland K, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Glob Change Biol 14:2740–2754

    Google Scholar 

  • Rühland KM, Paterson AM, Hargan K, Jenkin A, Clark BJ, Smol JP (2010) Reorganization of algal communities in the Lake of the Woods (Ontario, Canada) in response to turn-of-the-century damming and recent warming. Limnol Oceanogr 55:2433–2451

    Google Scholar 

  • Saade A, Bowler C (2009) Molecular tools for discovering the secrets of diatoms. Bioscience 59:757–765

    Google Scholar 

  • Salmaso N (2005) Effects of climatic fluctuations and vertical mixing on the interannual trophic variability of Lake Garda, Italy. Limnol Oceanogr 50:533–565

    Google Scholar 

  • Salmaso N (2010) Long-term phytoplankton community changes in a deep subalpine lake: responses to nutrient availability and climatic fluctuations. Freshw Biol 55:825–846

    Google Scholar 

  • Saros JE, Interlandi SJ, Wolfe AP, Engstrom DR (2003) Recent changes in diatom community structure of lakes in the Beartooth Mountain Range, U.S.A. Arct Antarct Alp Res 35:18–23

    Google Scholar 

  • Saros JE, Michel TJ, Interlandi SJ, Wolfe AP (2005) Resource requirements of Asterionella formosa and Fragilaria crotonensis in oligotrophic alpine lakes: implications for recent phytoplankton community reorganizations. Can J Fish Aquat Sci 62:1681–1689

    Google Scholar 

  • Saros JE, Clow DW, Blett T, Wolfe AP (2011) Critical nitrogen deposition loads in high-elevation lakes of the western US inferred from paleolimnological records. Wat Air Soil Poll 216:193–202

    Google Scholar 

  • Saros JE, Stone JR, Pederson GT, Slemmons KEH, Spanbauer T, Schliep A, Cahl D, Williamson CE, Engstrom DR (2012) Climate-induced changes in lake ecosystem structure inferred from coupled neo-and paleoecologcial approaches. Ecology 93:2155–2164

    Google Scholar 

  • Saros JE, Strock KE, McCue J, Hogan E, Anderson NJ (2013) Response of Cyclotella species to nutrients and incubation depth in Arctic lakes. J Plank Res 36:450–460

    Google Scholar 

  • Schindler DW (1997) Widespread effects of climate warming on freshwater ecosystems in North America. Hydrol Proc 11:1043–1067

    Google Scholar 

  • Schindler DW, Smol JP (2006) Cumulative effects of climate warming and other human activities on freshwaters of Arctic and Subarctic North America. Ambio 35:160–168

    Google Scholar 

  • Schindler DW, Dillon PJ, Schreier H (2006) A review of anthropogenic sources of nitrogen and their effects on Canadian aquatic ecosystems. Biogeochemistry 79:25–44

    Google Scholar 

  • Schmidt R, Weckström K, Lauterbach S, Tessadri R, Huber K (2012) North Atlantic climate impact on early late-glacial climate oscillations in the south-eastern Alps inferred from a multi-proxy lake sediment record. J Quat Sci 27:40–50

    Google Scholar 

  • Selbie DT, Sweetman JN, Etherton P, Hyatt KD, Rankin DP, Finney BP, Smol JP (2011) Climate change modulates structural and functional lake ecosystem responses to introduced anadromous salmon. Can J Fish Aquat Sci 68:675–692

    Google Scholar 

  • Shimoda Y, Azim ME, Perhar G, Ramin M, Kenney MA, Sadraddini S, Gudimov A, Arhonditsis GB (2011) Our current understanding of lake ecosystem response to climate change: what have we really learned from north temperate deep lakes? J Great Lakes Res 37:173–193

    Google Scholar 

  • Smayda TJ (1970) The suspension and sinking of phytoplankton in the sea. Oceanogr Mar Biol Ann Rev 8:353–414

    Google Scholar 

  • Smol JP (1983) Paleophycology of a high arctic lake near Cape Herschel, Ellesmere Island. Can J Bot 61:2195–2204

    Google Scholar 

  • Smol JP (1988) Paleoclimate proxy data from freshwater arctic diatoms. Verh Int Verein Limnol 23:837–844

    Google Scholar 

  • Smol JP (2008) Pollution of lakes and rivers: a paleoenvironmental perspective. Blackwell, Oxford

    Google Scholar 

  • Smol JP (2010) The power of the past: using sediments to track the effects of multiple stressors on lake ecosystems. Freshw Biol 55(Suppl. 1):43–59

    Google Scholar 

  • Smol JP, Douglas MSV (2007) From controversy to consensus: making the case for recent climate change in the Arctic using lake sediments. Front Ecol Environ 5:466–474

    Google Scholar 

  • Smol JP, Stoermer EF (2010) The diatoms: applications for the environmental and earth sciences, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Smol JP, Brown SR, McIntosh HJ (1984) A hypothetical relationship between differential algal sedimentation and diatom succession. Verh Int Verein Limnol 22:1361–1365

    Google Scholar 

  • Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Rühland K, Sorvari S, Antoniades D, Brooks SJ, Fallu MA, Hughes M, Keatley BE, Laing TE, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckstrom J (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proc Natl Acad Sci USA 102:4397–4402

    Google Scholar 

  • Solovieva N, Jones VJ, Nazarova L, Brooks SJ, Birks HJB, Grytnes J-A, Appleby PG, Kauppila T, Kondratenok B, Renberg I, Ponomarev V (2005) Palaeolimnological evidence for recent climatic changes in lakes from the northern Urals, arctic Russia. J Paleolimnol 33:463–482

    Google Scholar 

  • Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch für Hydrobiol 106:433–471

    Google Scholar 

  • Sorvari S, Korhola A (1998) Recent diatom assemblage change in subarctic Lake Saanajärvi, NW Finnish Lapland. J Paleolimnol 20:205–215

    Google Scholar 

  • Sorvari S, Korhola A, Thompson R (2002) Lake diatom response to recent Arctic warming in Finnish Lapland. Glob Change Biol 8:171–181

    Google Scholar 

  • Spaulding S, Edlund M (2009) Asterionella. In: Diatoms of the United States. http://westerndiatoms.colorado.edu/taxa/genus/Asterionella

  • Stager JC, Hecky RE, Grzesik D, Cumming BF, Kling H (2009) Diatom evidence for the timing and causes of eutrophication in Lake Victoria, East Africa. Hydrobiologia 636:463–478

    Google Scholar 

  • Stewart KA, Lamoureux SF, Finney BF (2008) Multiple ecological and hydrological changes recorded in varved sediments from Sanagak Lake, Nunuvut, Canada. J Paleolimnol 40:217–233

    Google Scholar 

  • Sweetman JN, LaFace E, Rühland KM, Smol JP (2008) Evaluating the response of Cladocera to recent environmental changes in lakes from the central Canadian Arctic treeline region. Arct Antarct Alp Res 40:584–591

    Google Scholar 

  • Talling JF (1966) The annual cycle of stratification and phytoplankton growth in Lake Victoria (East Africa). Int Rev Ges Hydrobiol 51:546–621

    Google Scholar 

  • Teubner K (2003) Phytoplankton, pelagic community and nutrients in a deep oligotrophic alpine lake: ratios as sensitive indicators of the use of P-resources (DRP:DOP:PP and TN:TO:SRSi). Wat Res 37:1583–1592

    Google Scholar 

  • Thienpont JR, Ginn BK, Cumming BF, Smol JP (2008) An assessment of environmental changes in three lakes from King’s County (Nova Scotia, Canada) using diatom-based paleolimnological techniques. Water Qual Res J Can 43:85–98

    Google Scholar 

  • Thienpont JR, Rühland KM, Pisaric MFJ, Kokelj SV, Kimpe LE, Blais JM, Smol JP (2013) Biological responses to permafrost thaw slumping in Canadian Arctic lakes. Freshw Biol 58:337–353

    Google Scholar 

  • Thies H, Tolotti M, Nickus U, Lami A, Musazzi S, Guilizzoni P, Rose NL, Yang H (2012) Interactions of temperature and nutrient changes: effects on phytoplankton in the Piburger See (Tyrol, Austria). Freshw Biol 57:2057–2075

    Google Scholar 

  • Tierney JE, Mayes MT, Meyer N, Johnson C, Swarzenski PW, Cohen AS, Russell JM (2010) Late-twentieth-century warming in Lake Tanganyika unprecedented since AD 500. Nat Geosci 3:422–425

    Google Scholar 

  • Tolotti M, Corradini F, Boscaini A, Calliari D (2007) Weather-driven ecology of planktonic diatoms in Lake Tovel (Trentino, Italy). Hydrobiol 578:147–156

    Google Scholar 

  • UC Davis (TERC) (2013) Tahoe Environmental Research Center (2013) State of the Lake Report

  • Vanden Byllaart J, Cyr H (2011) Does a warmer lake mean smaller benthic algae? Evidence against the importance of temperature-size relationships in natural systems. Oikois 120:162–169

    Google Scholar 

  • Verburg P, Hecky RE, Kling H (2003) Ecological consequences of a century of warming in Lake Tanganyika. Science 301:505–507

    Google Scholar 

  • Vet R, Artz RS, Carou S, Shaw M, Ro C-U, Aas W, Baker A, Bowersox VC, Dentener F, Galy-Lacaux C, Hou A, Pienaar JJ, Gillett R, Forti MC, Gromov S, Hara H, Khodzher T, Mahowald NM, Nickovic S, Rao PSP, Reid NW (2014) A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos Environ 93:3–100

    Google Scholar 

  • von Gunten L, Heiri O, Bigler C, van Leeuwen J, Casty C, Lotter AF, Sturm M (2007) Seasonal temperatures for the past ~400 years reconstructed from diatom and chironomid assemblages in a high-altitude lake (Lej da la Tscheppa, Switzerland). J Paleolimnol 39:283–299. doi:10.1007/s10933-007-9103-4

    Google Scholar 

  • Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mar BG, Bradley RS (2008) Climate change and tropical Andean glaciers: past, present and future. Earth Sci Rev 89:79–96

    Google Scholar 

  • Wang L, Lu H, Liu J, Gu Z, Mingram J, Chu G, Li J, Rioual P, Negendank JFW, Han J, Liu T (2008) Diatom-based inference of variations in the strength of Asian winter monsoon winds between 17,500 and 6000 calendar years B.P. J Geophy Res 113:D21101. doi:10.1029/2008JD010145

  • Wang L, Rioual P, Panizzo VN, Lu H, Gu Z, Chu G, Yang D, Han J, Liu J, Mackay AW (2012a) A 1000-yr record of environmental change in NE China indicated by diatom assemblages from maar lake Erlongwan. Quat Res 78:24–34

    Google Scholar 

  • Wang L, Li J, Lu H, Gu Z, Rioual P, Hao Q, Mackay AW, Jiang W, Cai B, Xu B, Han J, Chu G (2012b) The East-Asian winter monsoon over the last 15,000 years: its links to high-latitudes and tropical climate systems and complex correlation to the summer monsoon. Quat Sci Rev 32:131–142

    Google Scholar 

  • Wang Q, Fan X, Wang M (2014) Recent warming amplification over high elevation regions across the globe. Clim Dyn 43:87–101

    Google Scholar 

  • Werner P, Chaisson M, Smol JP (2005) Long-term limnological changes in six lakes with differing human impacts from a limestone region in southwestern Ontario, Canada. Lake Reserv Manage 21:436–452

    Google Scholar 

  • Wilhelm S, Adrian R (2008) Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshw Biol 53:226–237

    Google Scholar 

  • Wilson GP, Reed JM, Lawson IT, Frogley MR, Preece RC, Tzedakis PC (2008) Diatom response to the Last Glacial-Interglacial Transition in the Ioannina basin, northwest Greece: implication for Mediterranean palaeoclimate reconstruction. Quat Sci Rev 27:428–440

    Google Scholar 

  • Wilson GP, Frogley MR, Roucoux KH, Jones TD, Leng MJ, Lawson IT, Hughes PD (2013) Limnetic and terrestrial responses to climate change during the onset of the penultimate glacial stage in NW Greece. Glob Plan Change 107:213–225

    Google Scholar 

  • Wiltse B (2014) The response of Discostella species to climate change at the Experimental Lakes Area, Canada. PhD dissertation, Queen’s University, Kingston, ON. https://qspace.library.queensu.ca/handle/1974/12260

  • Winder M, Hunter DA (2008) Temporal organization of phytoplankton communities linked to physical forcing. Oecologia 156:179–192

    Google Scholar 

  • Winder M, Schindler DE (2004) Climatic effects on the phenology of lake processes. Glob Change Biol 10:1844–1856

    Google Scholar 

  • Winder M, Sommer U (2012) Phytoplankton response to a changing climate. Hydrobiologia 698:5–16

    Google Scholar 

  • Winder M, Reuter JE, Schadlow SG (2009) Lake warming favours small-sized planktonic diatom species. Proc R Soc B 276:427–435

    Google Scholar 

  • Wischnewski J, Mackay AW, Appleby PG, Mischke S, Herzschuh U (2011a) Modest diatom responses to regional warming on the southeast Tibetan Plateau during the last two centuries. J Paleolimnol 46:215–227

    Google Scholar 

  • Wischnewski J, Kramer A, Kong Z, Mackay AW, Simpson GL, Mischke S, Herzschuh U (2011b) Terrestrial and aquatic responses to climate change and human impact on the southeastern Tibetan Plateau during the past two centuries. Glob Change Biol 17:3376–3391

    Google Scholar 

  • Wischnewski J, Herzschuh U, Rühland KM, Bräuning A, Mischke S, Smol JP, Wang L (2013) Recent ecological responses to climate variability and human impacts in the Nianbaoyeze Mountains (eastern Tibetan Plateau) inferred from pollen, diatom and tree-ring data. J Paleolimnol 51:287–302

    Google Scholar 

  • Wolfe AP, Baron JS, Cornett RJ (2001) Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). J Paleolimnol 25:1–7

    Google Scholar 

  • Wolfe AP, Van Gorp A, Baron JS (2003) Recent ecological and biogeochemical changes in alpine lakes of Rocky Mountain National Park (Colorado, USA): a response to anthropogenic nitrogen deposition. Geobiology 1:153–168

    Google Scholar 

Download references

Acknowledgments

This work was supported primarily by grants from the Natural Sciences and Engineering Research Council of Canada and the Ontario Ministry of the Environment and Climate Change. We thank William Herb for the use of the wind data from International Falls, MN. We also thank Dermot Antoniades, Katherine Griffiths, Kris Hadley, Kathryn Hargan, Neal Michelutti, Katrina Moser, Euan Reavie, and Joshua Thienpont for comments on earlier drafts of the manuscript. We thank two anonymous reviewers and Tom Whitmore for their helpful and insightful comments that strengthened and clarified this paper, and we thank the editors for inviting us to submit this review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen M. Rühland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rühland, K.M., Paterson, A.M. & Smol, J.P. Lake diatom responses to warming: reviewing the evidence. J Paleolimnol 54, 1–35 (2015). https://doi.org/10.1007/s10933-015-9837-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-015-9837-3

Keywords

Navigation