Skip to main content
Log in

The effect of carbonization temperature on the morphology and adsorption of pine-shoot biomorphic porous carbon

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Reactions that occur during the carbonization of pine-shoot may determine the morphology and pore structure of biomorphic porous carbon. This phenomenon has the ability to change the adsorptive performance of biomorphic porous carbon. Individual reactions were separated from the evolution of CO2, CO, CH4, and H2 by using an on-line auto-sampled gas analyzer. Analysis of the structure surface morphology, and the distribution of pores of biomorphic porous carbon in three dimensions was performed through the use of XRD, SEM and polarizing microscopy. The results reveal that the morphology and pore structure of biomorphic porous carbon were significantly influenced by competitive reactions occurring at various temperatures of carbonization. High carbonization temperature favors the formation of well-ordered and penetrable pore channels. Conversely, extra high carbonization temperature may plug the pore-mouth, distort the pore-channels, and destroy the pore-structure of biomorphic porous carbon. Therefore, extra high carbonization temperatures have the ability to prevent small-size adsorbents, such as iodine, methyl blue and thiophenes, from entering into the pore channels of biomorphic porous carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Pleguezuelo, V. Zuazo, C. Bielders, J. Bocanegra, F. PereaTorres, J. Martínez, Bioenergy farming using woody crops. A review. Agron. Sustain. Dev. 35, 95 (2015)

    Article  CAS  Google Scholar 

  2. C. Gutiérrez-Arriaga, M. Serna-González, J. Ponce-Ortega, M. El-Halwagi, Multi-objective optimization of steam power plants for sustainable generation of electricity. Clean Technol. Environ. Policy 15, 551 (2013)

    Article  Google Scholar 

  3. F.H. Isikgor, C.R. Becer, Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6, 4497 (2015)

    Article  CAS  Google Scholar 

  4. C. Bessou, F. Ferchaud, B. Gabrielle, B. Mary, Biofuels, greenhouse gases and climate change. A review. Agron. Sustain. Dev. 31, 1 (2011)

    Article  CAS  Google Scholar 

  5. J. Cao, C.R. Rambo, H. Sieber, Preparation of porous Al2O3-ceramics by biotemplating of wood. J. Porous Mater. 11, 163 (2004)

    Article  CAS  Google Scholar 

  6. G. Onyestyak, Pinewood char templated mordenite/carbon honeycomb composite. New J. Chem. 30, 1058 (2006)

    Article  CAS  Google Scholar 

  7. M. Neumann, R. Noske, A. Taubert, B. Tiersch, P. Strauch, Highly structured, biomorphous [small beta]-SiC with high specific surface area from equisetaceae. J. Mater. Chem. 22, 9046 (2012)

    Article  CAS  Google Scholar 

  8. P. Afanasiev, C. Geantet, I. Llorens, O. Proux, Biotemplated synthesis of highly divided MoS2 catalysts. J. Mater. Chem. 22, 9731 (2012)

    Article  CAS  Google Scholar 

  9. H. Ma, W.-W. Liu, S.-W. Zhu, Q. Ma, Y.-S. Fan, B.-J. Cheng, Biotemplated hierarchical TiO2-SiO2 composites derived from Zea mays Linn. for efficient dye photodegradation. J. Porous Mater. 20, 1205 (2013)

    Article  CAS  Google Scholar 

  10. Q. Liu, J. Gu, W. Zhang, Y. Miyamoto, Z. Chen, D. Zhang, Biomorphic porous graphitic carbon for electromagnetic interference shielding. J. Mater. Chem. 22, 21183 (2012)

    Article  CAS  Google Scholar 

  11. O.P. Chakrabarti, H.S. Maiti, R. Majumdar, Biomimetic synthesis of cellular SiC based ceramics from plant precursor. Bull. Mater. Sci. 27, 467 (2004)

    Article  CAS  Google Scholar 

  12. E.V. Parkhomchuk, K.A. Sashkina, N.A. Rudina, N.A. Kulikovskaya, V.N. Parmon, Template synthesis of 3D-structured macroporous oxides and hierarchical zeolites. Catal. Ind. 5, 80 (2013)

    Article  Google Scholar 

  13. C.M.A. Parlett, K. Wilson, A.F. Lee, Hierarchical porous materials: catalytic applications. Chem. Soc. Rev. 42, 3876 (2013)

    Article  CAS  Google Scholar 

  14. R.-L. Liu, Y. Liu, X.-Y. Zhou, Z.-Q. Zhang, J. Zhang, F.-Q. Dang, Biomass-derived highly porous functional carbon fabricated by using a free-standing template for efficient removal of methylene blue. Bioresour. Technol. 154, 138 (2014)

    Article  CAS  Google Scholar 

  15. D. Wang, Y. Min, Y. Yu, Facile synthesis of wheat bran-derived honeycomb-like hierarchical carbon for advanced symmetric supercapacitor applications. J. Solid State Electrochem. 19, 577 (2015)

    Article  Google Scholar 

  16. S.-W. Han, D.-W. Jung, J.-H. Jeong, E.-S. Oh, Effect of pyrolysis temperature on carbon obtained from green tea biomass for superior lithium ion battery anodes. Chem. Eng. J. 254, 597 (2014)

    Article  CAS  Google Scholar 

  17. X. Yu, K. Zhang, N. Tian, A. Qin, L. Liao, R. Du et al., Biomass carbon derived from sisal fiber as anode material for lithium-ion batteries. Mater. Lett. 142, 193 (2015)

    Article  CAS  Google Scholar 

  18. Y. Du, X. Jiang, G. Lv, X. Li, Y. Chi, J. Yan et al., TG-pyrolysis and FTIR analysis of chocolate and biomass waste. J. Therm. Anal. Calorim. 117, 343 (2014)

    Article  CAS  Google Scholar 

  19. C. Kennes, E.R. Rene, M.C. Veiga, Bioprocesses for air pollution control. J. Chem. Technol. Biotechnol. 84, 1419 (2009)

    Article  CAS  Google Scholar 

  20. R.J. White, V. Budarin, R. Luque, J.H. Clark, D.J. Macquarrie, Tuneable porous carbonaceous materials from renewable resources. Chem. Soc. Rev. 38, 3401 (2009)

    Article  CAS  Google Scholar 

  21. B. Ruiz, E. Ruisanchez, R.R. Gil, N. Ferrera-Lorenzo, M.S. Lozano, E. Fuente, Sustainable porous carbons from lignocellulosic wastes obtained from the extraction of tannins. Microporous Mesoporous Mater. 209, 23 (2015)

    Article  CAS  Google Scholar 

  22. W. Tian, Q. Gao, Y. Tan, K. Yang, L. Zhu, C. Yang et al., Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material. J. Mat. Chem. A 3, 5656 (2015)

    Article  CAS  Google Scholar 

  23. B. Bestani, N. Benderdouche, B. Benstaali, M. Belhakem, A. Addou, Methylene blue and iodine adsorption onto an activated desert plant. Bioresour. Technol. 99, 8441 (2008)

    Article  CAS  Google Scholar 

  24. Y. Gan, N. Tian, X. Tian, L. Ma, W. Wang, C. Yang et al., Adsorption behavior of methylene blue on amine-functionalized ordered mesoporous alumina. J. Porous Mater. 22, 147 (2015)

    Article  CAS  Google Scholar 

  25. J. Wen, X. Han, H. Lin, Y. Zheng, W. Chu, A critical study on the adsorption of heterocyclic sulfur and nitrogen compounds by activated carbon: equilibrium, kinetics and thermodynamics. Chem. Eng. J. 164, 29 (2010)

    Article  CAS  Google Scholar 

  26. H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781 (2007)

    Article  CAS  Google Scholar 

  27. Z. Chen, M. Hu, X. Zhu, D. Guo, S. Liu, Z. Hu et al., Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Bioresour. Technol. 192, 441 (2015)

    Article  CAS  Google Scholar 

  28. K. Wang, K.H. Kim, R.C. Brown, Catalytic pyrolysis of individual components of lignocellulosic biomass. Green Chem. 16, 727 (2014)

    Article  CAS  Google Scholar 

  29. X. Zhu, Z. Chen, B. Xiao, Z. Hu, M. Hu, C. Liu et al., Co-pyrolysis behaviors and kinetics of sewage sludge and pine sawdust blends under non-isothermal conditions. J. Therm. Anal. Calorim. 119, 2269 (2015)

    Article  CAS  Google Scholar 

  30. S. Willfor, B. Holmbom, Isolation and characterisation of water soluble polysaccharides from Norway spruce and Scots pine. Wood Sci. Technol. 38, 173 (2004)

    Article  Google Scholar 

  31. D. Shen, R. Xiao, S. Gu, K. Luo, The pyrolytic behavior of cellulose in lignocellulosic biomass: a review. RSC Advances 1, 1641 (2011)

    Article  CAS  Google Scholar 

  32. R.P. Giron, R.R. Gil, I. Suarez-Ruiz, E. Fuente, B. Ruiz, Adsorbents/catalysts from forest biomass fly ash. Influence of alkaline activating agent. Microporous Mesoporous Mater. 209, 45 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China (The 47th batch), College students’ innovative entrepreneurial training program of university of science and technology of liaoning (DC2015061) and the Doctoral Start-up Funding at the University of Science and Technology Liaoning, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songdong Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Yao, S., Xu, X. et al. The effect of carbonization temperature on the morphology and adsorption of pine-shoot biomorphic porous carbon. J Porous Mater 23, 1169–1179 (2016). https://doi.org/10.1007/s10934-016-0175-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0175-2

Keywords

Navigation