Skip to main content
Log in

Wettability of porous anodic aluminium oxide membranes with three-dimensional, layered nanostructures

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The architecture-dependent wettability of three-dimensional (3D), porous anodic aluminium oxide (AAO) membranes with varying surface morphologies including hierarchical, mesh and honeycomb nanostructures is reported. The surface morphology and underlayer structure play different roles in regulating the wetting behaviour of the AAO membranes. For the mild AAO membranes, the wetting behaviour of the ultra-thin top layer is dominated by the surface morphology in which the water contact angles (WCAs) of the AAO membranes with hierarchical, mesh and honeycomb structures are approximately 113.7° ± 4.6°, 94.9° ± 0.7° and 98.8° ± 5.8°, respectively. The wetting behaviour of the 3D, layered AAO membranes is dominated by both the surface morphology and the underlayer structure. Notably, the WCA of the mild AAO membrane with a layered hierarchical structure increases in the second layer (increase in the hole density). The WCAs of the three kinds of layered hard AAO membranes decrease in the second layer (increase in the hole depth) and then decrease slowly or increase in the third transition layer (decrease in the hole density). The WCAs of all the AAO membranes decrease linearly at different rates with the formation of the ordered bottom layer. The above results can facilitate the engineering of nanostructures for controlling the surface wetting behaviour of materials and devices for applications in multiple fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X.F. Gao, L. Jiang, Nature. 432, 36 (2004)

    Article  CAS  Google Scholar 

  2. X. Gao, X. Yan, X. Yao et al., Adv. Mater. 19, 2213 (2007)

    Article  CAS  Google Scholar 

  3. Y. Zheng, X. Gao, L. Jiang, Soft Matter. 3, 178 (2007)

    Article  CAS  Google Scholar 

  4. T.L. Sun, L. Feng, X.F. Gao et al., Acc. Chem. Res. 38, 644 (2005)

    Article  CAS  Google Scholar 

  5. M.H. Jin, X.J. Feng, L. Feng et al., Adv. Mater. 17, 1977 (2005)

    Article  CAS  Google Scholar 

  6. N. Chiou, C. Lui, J. Guan et al. Nat. Nanotechnol. 2, 354 (2007)

    Article  CAS  Google Scholar 

  7. T. Sun, G. Wang, L. Feng et al., Angew. Chem. Int. Ed. 43, 357 (2004)

    Article  CAS  Google Scholar 

  8. B.S. Kim, S. Shin, S.J. Shin et al., Nanoscale Res. Lett. 6, 333 (2011)

    Article  Google Scholar 

  9. K. Chu, R. Xiao, E.N. Wang, Nat. Mater. 9, 413 (2010)

    Article  CAS  Google Scholar 

  10. K. Zhang, J. Wu, P. Chu et al., Int. J. Electrochem. Sci. 10, 6257 (2015)

    CAS  Google Scholar 

  11. F. Xia, L. Jiang, Adv. Mater. 20, 2842 (2008)

    Article  CAS  Google Scholar 

  12. B. Bhushan, Y.C. Jung, Prog. Mater. Sci. 56, 1 (2011)

    Article  CAS  Google Scholar 

  13. D.L. Hu, B. Chan, J.W.M. Bush, Nature. 424, 663 (2003)

    Article  CAS  Google Scholar 

  14. Y. Zhang, S. Qu, X. Cheng et al., J. Bionic. Eng. 13, 132 (2016)

    Article  Google Scholar 

  15. C.W. Extrand, S.I. Moon, P. Hall et al., Langmuir. 23, 8882 (2007)

    Article  CAS  Google Scholar 

  16. F.C. Cebeci, Z.Z. Wu, L. Zhai et al., Langmuir. 22, 2856 (2006)

    Article  CAS  Google Scholar 

  17. L. Woo, J. Ran, G. Ulrich, Nat. Mater. 5, 741 (2006)

    Article  Google Scholar 

  18. B.S. Chen, Q.L. Xu, X.L. Zhao et al., Adv. Funct. Mater. 20, 3791 (2010)

    Article  CAS  Google Scholar 

  19. K.C. Woo, S. Insung, C., Adv. Funct. Mater. 18, 1089 (2008)

    Article  Google Scholar 

  20. S.K. Panda, D. Han, H. Yoo et al., Electrochem. Solid-State Lett. 6, E21 (2011)

    Article  Google Scholar 

  21. J. Wang, L. Huang, L. Zhai et al., Appl. Surf. Sci. 261, 605 (2012)

    Article  CAS  Google Scholar 

  22. D. Shan, L. Huang, X. Li et al., J. Phys. Chem. C. 118, 23930 (2014)

    Article  CAS  Google Scholar 

  23. J. Kolar, J.M. Macak, K. Terabe et al., J. Mater. Chem. C. 2, 349 (2014)

    Article  CAS  Google Scholar 

  24. N. Abdellaoui, A. Pereira, T. Kandri et al., J. Mater. Chem. C. 4, 9212 (2016)

    Article  CAS  Google Scholar 

  25. M. Zheng, M. Sakairi, H. Jha, Corros. Sci. 55, 332 (2012)

    Article  CAS  Google Scholar 

  26. J. Liang, Y. Hu, Y. Fan et al., Surf. Interface Anal. 45, 1211 (2013)

    Article  CAS  Google Scholar 

  27. S. Cho, S. Lee, S.H. Jeong et al., Integr. Biol. (Camb). 5, 828 (2013)

    Article  CAS  Google Scholar 

  28. S. Lee, W. Kim, S. Lee et al., Scr. Mater. 104, 29 (2015)

    Article  CAS  Google Scholar 

  29. Z.R. Li, J.X. Wang, Y.Z. Zhang et al., Appl. Phys. Lett. 97, 233107 (2010)

    Article  Google Scholar 

  30. S. Kim, A.A. Polycarpou, H. Liang, Appl. Surf. Sci. 351, 460 (2015)

    Article  CAS  Google Scholar 

  31. J. Yang, J. Wang, C. Wang et al., Thin Solid Films. 562, 353 (2014)

    Article  CAS  Google Scholar 

  32. V. Raspal, K.O. Awitor, C. Massard et al., Langmuir. 28, 11064 (2012)

    Article  CAS  Google Scholar 

  33. J.G. Buijnsters, R. Zhong, N. Tsyntsaru et al., Acs Appl. Mater. Inter. 5, 3224 (2013)

    Article  CAS  Google Scholar 

  34. C.B. Ran, G.Q. Ding, W.C. Liu et al., Langmuir. 24, 9952 (2008)

    Article  CAS  Google Scholar 

  35. Y. Lujun, Z. Maojun, M. Li et al., Mater. Res. Bull. 46, 1403 (2011)

    Article  Google Scholar 

  36. H. Zhang, L. Yin, S. Shi et al., Microelectron. Eng. 141, 238 (2015)

    Article  CAS  Google Scholar 

  37. J. Ye, Q. Yin, Y. Zhou, Thin Solid Films. 517, 6012 (2009)

    Article  CAS  Google Scholar 

  38. A.Y. Ho, H. Gao, Y.C. Lam et al., Adv. Funct. Mater. 18, 2057 (2008)

    Article  CAS  Google Scholar 

  39. R.N. Wenzel, J. Phys. Chem. 53, 1466 (1949)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Industry Key Technologies R&D project in Shaanxi Province of China (Program No. 2016GY-209) and the Natural Science Foundation of Department of Education of Shaanxi Province, China (Grant No. 14JK2051). Some of the SEM works were done at International Center for Dielectric Research (ICDR) of Xi’an Jiaotong University. The authors also would like to thank Ms. Dai for her help in using SEM and Mr. Ren at Instrument Analysis Center of Xi’an Jiaotong University for his assistance with SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqing Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1823 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Huang, L., Zi, C. et al. Wettability of porous anodic aluminium oxide membranes with three-dimensional, layered nanostructures. J Porous Mater 25, 1707–1714 (2018). https://doi.org/10.1007/s10934-018-0584-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0584-5

Keywords

Navigation