Skip to main content
Log in

Subloop Magnetic Moment Reversal-Induced Recovery Effect in Exchange-Biased IrMn/Pt/Co/Pt Multilayers

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

For perpendicular exchange-biased IrMn/Pt/ Co/Pt multilayers with bidomain state, double hysteresis loops (DHLs) are achieved. It is found that exchange bias field and coercivity in full loop and two subloops’ training show different dependencies on the cycle number. Further studies show that the negative-biased (positive-biased) subloop measurement will influence training effect of the positive-biased (negative-biased) subloop, acting as a recovery process. This recovery procedure is different from the conventional ways, i.e., by applying a magnetic field perpendicular to the initial pinning direction or by leaving the sample alone for several days without any applied magnetic fields. This recovery effect can be explained by the re-rotation of antiferromagnet (AFM) spins after corresponding subloop magnetic moment reversal during the full loop measurement, which cannot happen during the subloop measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Meiklejohn, W.H., Bean, C.P.: New magnetic anisotropy. Phys. Rev. 102, 1413–1414 (1956)

    Article  ADS  Google Scholar 

  2. Hu, H.N., Qiu, X.P., Shi, Z.: The hysteretic behavior of angular dependence of exchange bias in nife/granular-femn-mgo bilayers. Chin. Phys. Lett. 30, 027–501 (2013)

    Google Scholar 

  3. Demirci, E., Öztürk, M., Topkaya, R., Kazan, S., Akdo ̆gan, N., Obaida, M., Westerholt, K.: Thickness and temperature dependence of exchange bias in Co/CoO bilayers. J. Supercond. Nov. Magn. 25, 2591–2595 (2012)

    Article  Google Scholar 

  4. Caminale, M., Moroni, R., Torelli, P., Panaccione, G., Lin, W.C., Canepa, M., Mattera, L., Bisio, F.: Effects of surface oxidation on the exchange-bias properties. Phys. Rev. B 91, 094–435 (2015)

    Article  Google Scholar 

  5. Chechenin, N.G., Chernykh, P.N., Dushenko, S.A., Dzhun, I.O., Goikhman, A.Y., Rodionova, V.V.: Asymmetry of magnetization reversal of pinned layer in NiFe/Cu/NiFe/IrMn spin-valve structure. J. Supercond. Nov. Magn. 27, 1547–1552 (2014)

    Article  Google Scholar 

  6. Akdogan, N., Yagmur, A., Ozturk, M., Demirci, E., Ozturk, O., Erkovan, M.: Interface induced manipulation of perpendicular exchange bias in Pt/Co/(Pt,Cr)/CoO thin films. J. Magn. Magn. Mater 373, 120–123 (2015)

    Article  ADS  Google Scholar 

  7. Chen, J.Y., Thiyagarajah, N., Xu, H.J., Coey, J.M.D.: Perpendicular exchange bias effect in sputter-deposited CoFe/IrMn bilayers. Appl. Phys. Lett. 104, 152–405 (2014)

    Google Scholar 

  8. Marrows, C.H.: Three-dimensional exchange bias in {Co/Pd} N/FeMn. Phys. Rev. B 68, 012–405 (2003)

    Article  Google Scholar 

  9. Garcia, F., Sort, J., Rodmacq, B., Auffret, S., Dieny, B.: Large anomalous enhancement of perpendicular exchange bias by introduction of a nonmagnetic spacer between the ferromagnetic and antiferromagnetic layers. Appl. Phys. Lett. 83, 3537 (2003)

    Article  ADS  Google Scholar 

  10. Shi, Z., Du, J., Zhou, S.M.: Exchange bias in ferromagnet/antiferromagnet bilayers. Chin. Phys. B 23, 027–503 (2014)

    Google Scholar 

  11. Sort, J., Baltz, V., Garcia, F., Rodmacq, B., Dieny, B.: Tailoring perpendicular exchange bias in [Pt/Co]-IrMn multilayers. Phys. Rev. B 71, 054–411 (2005)

    Article  Google Scholar 

  12. Sort, J., Garcia, F., Rodmacq, B., Auffret, S., Dieny, B.: Enhancement of exchange bias through a non-magnetic spacer. J. Magn. Magn. Mater. 272-276, 355–356 (2004)

    Article  ADS  Google Scholar 

  13. Jiang, R.F., Lai, C.H.: Novel laminated antiferro-magnetically coupled soft magnetic underlayer for perpendicular recording media. J. Magn. Magn. Mater. 272-276, 2312–2313 (2004)

    Article  ADS  Google Scholar 

  14. Proenca, M.P., Ventura, J., Sousa, C.T., Vazquez, M., Araujo, J.P.: Exchange bias, training effect, and bimodal distribution of blocking temperatures in electrodeposited core-shell nanotubes. Phys. Rev. B 87, 134–404 (2013)

    Article  Google Scholar 

  15. Su, Y.C., Hu, J.G.: Exchange bias training effect under different energy dissipation pattern. J. Appl. Phys. 112, 043– 906 (2012)

    Google Scholar 

  16. Tian, Z.M., Zhu, C.M., Liu, Y., Shi, J., Ouyang, Z.W., Xia, Z.C., Du, G.H., Yuan, S.L.: Size-dependent training effect in exchange coupled NiFe2O4/NiO nanogranular systems. J. Appl. Phys. 115, 083–902 (2014)

    Article  Google Scholar 

  17. Menendez, E., Dias, T., Geshev, J., Lopez-Barbera, J.F., Nogues, J., Steitz, R., Kirby, B.J., Borchers, J.A., Pereira, L.M.C., Vantomme, A., Temst, K.: Interdependence between training and magnetization reversal in granular Co-CoO exchange bias systems. Phys. Rev. B 89, 144–407 (2014)

    Article  Google Scholar 

  18. Dias, T., Menendez, E., Liu, H., Van Haesendonck, C., Vantomme, A., Temst, K., Schmidt, J.E., Giulian, R., Geshev, J.: Rotatable anisotropy driven training effects in exchange biased Co/CoO films. J. Appl. Phys. 115, 243– 903 (2014)

    Article  Google Scholar 

  19. Dobrynin, A.N., Maccherozzi, F., Dhesi, S.S., Fan, R., Bencok, P., Steadman, P.: Antiferromagnetic exchange spring as the reason of exchange bias training effect. Appl. Phys. Lett. 105, 032–407 (2014)

    Article  Google Scholar 

  20. Barman, J., Bora, T., Ravi, S.: Study of exchange bias and training effect in NiCr 2 O 4. J. Magn. Magn. Mater. 385, 93– 98 (2015)

    Article  ADS  Google Scholar 

  21. Fulcomer, E., Charap, S.H.: Thermal fluctuation aftereffect model for some systems with ferromagnetic-antiferromagnetic coupling. J. Appl. Phys 43, 4190 (1972)

    Article  ADS  Google Scholar 

  22. Hoffmann, A.: Symmetry driven irreversibilities at ferromagnetic antiferromagnetic interfaces. Phys. Rev. Lett. 93, 097–203 (2004)

    Google Scholar 

  23. Brems, S., Buntinx, D., Temst, K., Van Haesendonck, C., Radu, F., Zabel, H.: Reversing the training effect in exchange biased CoO/Co bilayers. Phys. Rev. Lett. 95, 157– 202 (2005)

    Article  Google Scholar 

  24. Olamit, J., Arenholz, E., Li, Z.P., Petracic, O., Roshchin, I.V., Morales, R., Batlle, X., Schuller, I.K., Liu, K.: Loop bifurcation and magnetization rotation in exchange-biased Ni/FeF 2. Phys. Rev. B 72, 012–408 (2005)

    Article  Google Scholar 

  25. Petracic, O., Li, Z.P., Roshchin, I.V., Viret, M., Morales, R., Batlle, X., Schuller, I.K.: Bidomain state in exchange biased FeF 2/Ni. Appl. Phys. Lett. 87, 222–509 (2005)

    Article  Google Scholar 

  26. Morales, R., Vélez, M., Petracic, O., Roshchin Igor, V., Li, Z.P., Batlle, X., Alameda, J.M., Schuller Ivan, K.: Three-dimensional spin structure in exchange-biased antiferromagnetic/ferromagnetic thin films. Appl. Phys. Lett. 95, 092–503 (2009)

    Google Scholar 

  27. Stiles, M.D., McMichael, R.D.: Model for exchange bias in polycrystalline ferromagnet-antiferromagnet bilayers. Phys. Rev. B 59, 3722 (1999)

    Article  ADS  Google Scholar 

  28. Geshev, J., Pereira, L.G., Schmidt, J.E.: Rotatable anisotropy and coercivity in exchange-bias bilayers. Phys. Rev. B 66, 134–432 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51301133, 51471135 and 51171152), National Basic Research Program of China (2012CB821404), Fundamental Research Funds for the Central Universities (3102014JCQ01093), and Aeronautical Science Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. D. Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X.J., Shi, X.X., Cao, C.D. et al. Subloop Magnetic Moment Reversal-Induced Recovery Effect in Exchange-Biased IrMn/Pt/Co/Pt Multilayers. J Supercond Nov Magn 29, 905–910 (2016). https://doi.org/10.1007/s10948-015-3353-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3353-6

Keywords

Navigation