Skip to main content
Log in

Unique Phenomena in Transverse Ising Nanoislands

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The phase diagrams and magnetizations in four transverse Ising nanoislands with an antiferromagnetic configuration and a ferromagnetic spin configuration are examined by the use of the effective field theory with correlations. They exhibit the same behaviors for the magnetic properties. Some characteristic phenomena, such as the reentrant phenomena, are found in the magnetic properties. The phenomena come from the frustration induced by the finite size of the systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chiba, D., Fukami, S., Shimamura, K., Ishikwata, N., Kobayashi, K., Ono, T.: Nat. Mater. 10, 853 (2011)

    Article  ADS  Google Scholar 

  2. Schneider, C.M., Bressler, P., Schuster, P., Kirschner, J., de Miguel, J.J., Miranda, R.: Phys. Rev. Lett. 64, 1059 (1990)

    Article  ADS  Google Scholar 

  3. Bhowrnik, R.N.: J. Magn. Magn. Mater. 323, 311 (2011)

    Article  ADS  Google Scholar 

  4. Yamada, T.K., Gerhard, L., Wesselink, R.J.H., Ernst, A., Wulfhekel, W.: J. Magn. Soc. Jpn. 36, 100 (2012)

    Article  Google Scholar 

  5. Loving, M., Jimenez-Villacorta, F., Kaeswurm, B., Arena, D.A., Marrows, C.H., Lewis, L.H.: J. Phys. D; Appl. Phys. 46, 162002 (2013)

    Article  ADS  Google Scholar 

  6. Kaneyoshi, T.: Phys. Status Solidi (b) 248, 250 (2011)

    Article  ADS  Google Scholar 

  7. Kaneyoshi, T.: Phase Trans. 86, 404 (2012)

    Article  Google Scholar 

  8. Carcia, P.F.: J. Appl. Phys. 63, 5066 (1988)

    Article  ADS  Google Scholar 

  9. Kaneyoshi, T.: Phase Trans. 87, 603 (2014)

    Article  Google Scholar 

  10. Kaneyoshi, T.: Physica B 472, 11 (2015)

    Article  ADS  Google Scholar 

  11. Kaneyoshi, T.: Phys. E. 65, 100 (2015)

    Article  Google Scholar 

  12. Kaneyoshi, T.: J. Phys. Chem. Solids 87, 104 (2015)

    Article  ADS  Google Scholar 

  13. Lu, Z.X.: Phase Trans. 89, 273 (2016)

    Article  Google Scholar 

  14. Jiang, W., Wang, Z., Guo, A.B., Kai, K., Wang, Y.N.: Phys. E. 73, 250 (2015)

    Article  Google Scholar 

  15. Jiang, W., Wang, Y.N.: J. Magn. Magn. Mater. 426, 785

  16. Masrour, R., Jabar, A., Hamedoun, M., Benyoussef, A.: J. Super. Nov. Magn. 29, 2413 (2016)

    Article  Google Scholar 

  17. Jabar, A., Masrour, R., Benyoussef, A., Hamedoum, M.: J. Super. Nov. Magn. 29, 1807 (2017)

    Article  Google Scholar 

  18. Peng, Z., Wang, W., Lv, D.L., Lui, R.J., Li, Q.: Superlattices Microstruct. 109, 675 (2017)

    Article  ADS  Google Scholar 

  19. Bahmad, L., Masrour, R., Benyoussef, A.: J. Supercond. Nov. Magn. 25, 2015 (2012)

    Article  Google Scholar 

  20. Kaneyoshi, T.: J. Super. Nov. Magn. published online (2018)

  21. Honmura, R., Kaneyoshi, T.: J. Phys. C 12, 3979 (1979)

    Article  ADS  Google Scholar 

  22. Kaneyoshi, T.: Acta Phys. Pol. A 83, 703 (1993)

    Article  Google Scholar 

  23. Liu, J.W., Xin, H.Z., Chen, L.S., Zhang, Y.C.: Chin. Phys. B 22, 027501 (2013)

    Article  ADS  Google Scholar 

  24. Magoussi, H., Zaim, A., Kerouad, M.: Superlattices Microstruct. 89, 188 (2016)

    Article  ADS  Google Scholar 

  25. Zhang, Q., Wei, G., Xin, Z., Liang, Y.: J. Magn. Magn. Mater. 280, 14 (2004)

    Article  ADS  Google Scholar 

  26. Yuksel, Y., Akinci, U.: J. Phys. Chem. Solids 112, 143 (2017)

    Article  ADS  Google Scholar 

  27. Zernike, F.: Physica 7, 565 (1940)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kaneyoshi.

Appendices

Appendix 1

The longitudinal magnetizations of two nanoparticles shown in Fig. 1 are given by

$$ m=[\cos h(A)+m\sin h(A)]^{\mathrm{2}}F(x)\|{~}_{x = 0.0} $$
(13)

and

$$ \begin{array}{l} m_{1} =\left[ {\cos h\left( A \right)-m_{2} \sin h\left( A \right)} \right]^{2}F\left( x \right)\vert_{x = 0.0} \\ m_{2} =\left[ {\cos h\left( A \right)-m_{1} \sin h\left( A \right)} \right]^{2}F\left( x \right)\vert_{x = 0.0} \end{array} $$
(14)

These equations exactly reduce to

$$ m[1.0-F(2.0J)]= 0.0 $$
(15)

and

$$ m_{\mathrm{1}}m_{\mathrm{2}}[1.0-F(2.0J)][1.0+F(2.0J)]= 0.0 $$
(16)

When h ≠ 0.0, 1.0 > F(2.0J). Accordingly, the magnetizations must be m = 0.0 and m1 = m2 = 0.0, when T > 0.0. When h = 0.0, the function is given by F(2.0) = tanh(2.0t), so that the transition temperature (TC) must be given by TC = 0.0 K, in order to satisfy the relation of 1.0 = F(2.0J). Thus, the two-dimensional nanoparticles in Fig. 1 do not exhibit a finite magnetization at a finite temperature (m = 1.0 at T = 0.0 K and m = 0.0 for T > 0.0 K), as noted in Section 1.

Appendix 2

The longitudinal magnetizations of two nanoislands shown in Fig. 10 are given by

$$ \begin{array}{l} m_{1} =[\cos h\left( A \right)+m_{1} \sin h\left( A \right)\left] {{~}^{2}} \right[\cos h\left( B \right)-m_{1} \sin h\left( B \right)]F\left( x \right)\vert_{x = 0} \\ \text{and} \\ m_{2} =[\cos h\left( A \right)+m_{2} \sin h\left( A \right)\left] {{~}^{2}} \right[\cos h\left( B \right)-m_{1} \sin h\left( B \right)]F\left( x \right)\vert_{x = 0} \end{array} $$
(17)

for system C and

$$ \begin{array}{l} m_{1} =[\cos h\left( A \right)-m_{2} \sin h \left( A \right)\left] {{~}^{2}} \right[\cos h \left( B \right)-m_{2} \sin h \left( B \right)]F\left( x \right)\vert_{x = 0} \\ \text{and} \\ m_{2} =[\cos h \left( A \right)-m_{1} \sin h \left( A \right)\left] {{~}^{2}} \right[\cos h \left( B \right)-m_{1} \sin h \left( B \right)]F\left( x\right)\vert_{x = 0} \end{array} $$
(18)

for system D. Expanding the right hand side of coupled equations, we get

$$ \begin{array}{l} m_{1} = 2.0m_{1} K_{1} -m_{2} K_{2} -\left( {m_{1} } \right)^{2}m_{2} K_{3}\\ \text{and} \\ m_{2} = 2.0m_{2} K_{1} -m_{1} K_{2} -\left( {m_{1} } \right)^{2}m_{2} K_{3} \end{array} $$
(19)

for system C and

$$ \begin{array}{l} m_{1} =-\,m_{2} \left[ {2.0K_{1} +K_{2} } \right]-\left( {m_{2} } \right)^{3}K_{3} \\ \text{and} \\ m_{2} =-\,m_{1} \left[ {2.0K_{1} +K_{2} } \right]-\left( {m_{1} } \right)^{3}K_{3} \end{array} $$
(20)

for system D. Following the discussions in Appendix 1, the phase diagrams (or transition temperature) in the two systems (C and D) can be determined from the following relation:

$$ 2.0K_{\mathrm{1}}+K_{\mathrm{2}}= 1.0 $$
(21)

Equation (21) is nothing but (6) for systems A and B. In this way, the phase diagrams of systems C and D depicted in Fig. 10 are completely equivalent to those given in Section 3.

On the magnetizations of the two (C and D) systems, the results of system B given in Section 4 (Fig. 8) are also valid for these two systems, although, at first sight, the coupled equations ((19) and (20)) seem to be different from the coupled (7). In Fig. 11, the thermal variations of mT (solid line), m1 (dashed curve), and m2 (dashed curve) are plotted for system C with h = 0.0 and r = 5.0, by solving the coupled (20) numerically. In fact, these results can be also obtained by solving the coupled (19) and (7). Furthermore, the behavior of m1 in the figure is completely equivalent to that of m in Fig. 7 (or the curve labeled r = 5.0) for system A.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaneyoshi, T. Unique Phenomena in Transverse Ising Nanoislands. J Supercond Nov Magn 32, 591–598 (2019). https://doi.org/10.1007/s10948-018-4741-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4741-5

Keywords

Navigation