Skip to main content
Log in

Reviewing the active stress field in Central Asia by using a modified stress tensor approach

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

Central Asia and its surroundings constitute a geodynamically complicated region, where almost all types of tectonic patterns can be observed. A triple junction, collision, and subduction zones, as well as extended fault systems of all types prevail in different parts of this region and compose one of the most interesting and complex geotectonic environments on Earth. This complicated setting is also associated with intense deformation, resulting in a large number of high seismicity zones, where numerous strong earthquakes occur, also extending, in some cases, to intermediate depths. Several previous studies have focused on specific seismotectonic zones in order to assess the active tectonic setting and the associated stress regime. We attempt to provide a unified but detailed picture of the stress field variability for the entire central Asia region, using the well-known inversion method proposed by Gephart and Forsyth (1984), modified in the present work on the basis of Fisher statistics. For this application, we employ a large number of focal mechanisms, spatially separated in 138 data groups. Τhe proposed modified algorithm (FD-BSM) examines the Fisher distribution of all possible stress principal axes solutions and select the one that: (a) shows the smallest angle variation from the Fisher mean in all three principal distributions and (b) minimizes the difference between the theoretical and observed slip vectors of the employed fault plane solution data. Synthetic tests and comparison of the corresponding results with real data show that, in cases where the stress regime is not clearly uniform or the number of available data is rather small, the models selected by the modified approach (FD-BSM) are more robust and show better spatial coherence compared to the initial Gephart and Forsyth (1984) method or alternative techniques such as the method of Michael (1984, 1987) as adapted by Vavrycuk (2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 16
Fig. 18

Similar content being viewed by others

References

  • Abdrakhmatov K, Aldazhanov S, Hager B, Hamburger M, Herring T, Kalabaev K, Makarov V, Molnar P, Panasyuk S, Prilepin M, Reilinger R, Sadybakasov L, Souter B, Trapeznikov YA, Tsurkov V, Zubovich A (1996) Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates. Nature 384:450–453

    Article  Google Scholar 

  • Allen M, Vincent S, Alsop G, Zadeh A, Flecker R (2003) Late Cenozoic deformation in the South Caspian region: effects of a rigid basement block within a collision zone. Tectonophysics 366:223–239

    Article  Google Scholar 

  • Angelier J (1979) Determination of the mean principal directions of stresses for a given fault population. Tectonophysics 56:17–26

    Article  Google Scholar 

  • Angelier J (1984) Tectonic analysis of fault slip data sets. J Geophys Res 89:5835–5848

    Article  Google Scholar 

  • Bertrand G, Rangin C (2003) Tectonics of the western margin of the Shan plateau (central Myanmar): implication for the India-Indochina oblique convergence since the Oligocene. J of Asian Earth Sciences 21:1139–1157

    Article  Google Scholar 

  • Bilham R, Larson K, Freymueller J, Project LdyLhim members (1997) GPS measurements of the present-day convergence across the Nepal Himalaya. Nature 386:471–497

    Article  Google Scholar 

  • Billington S, Isacks B, Barazangi M (1977) Spatial distribution and focal mechanisms of mantle earthquakes in the Hindu kush-Pamir region: a contorted Benioff zone. Geology 5:699–704

    Article  Google Scholar 

  • Bott M (1959) The mechanics of oblique slip faulting. Geol Mag 96:109–117

    Article  Google Scholar 

  • Burtman V and Molnar P (1993) Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir. Tech. rept. Spec. Pap., 281, Geological Soc. of America

  • Buslov M, De Grave J, Bataleva E, Batalev V (2007) Cenozoic tectonic and geodynamic evolution of the Kyrgyz Tien Shan Mountains: a review of geological, thermochronological and geophysical data. J of Asian Earth Sciences 29:205–214

    Article  Google Scholar 

  • Carey E, Brunier B (1974) Analyse theorique et numerique d'un modele mechanique elementaire applique a l'etude d'une population de failes. C R Acadamy of Science, Paris, D 279:891–894

    Google Scholar 

  • Carey-Gailhardis E, Mercier J (1987) A numerical method for determining the state of stress using focal mechanisms of earthquake populations: application to Tibetan teleseisms and microseismicity of Southern Peru. Earth Planet Sci Let 82:165–179

    Article  Google Scholar 

  • Chandra U (1977) Earthquakes of Peninsular India-A seismotectonic study. Bull Seism Soc Am 67(5):1387–1413

    Google Scholar 

  • Chandra U (1981) Focal mechanism solutions and their tectonic implications for the eastern Alpine-Himalayan region. Geodynamics Ser 3:243–271

    Article  Google Scholar 

  • Chatelain J, Roecker S, Hatzfield D, Molnar P (1980) Microearthquake seismicity and fault plane solutions in the Hindu Kush region and their tectonic implications. J Geophys Res 85:1365–1387

    Article  Google Scholar 

  • Christova C (2001) Depth distribution of stresses in the Kamchatka Wadati-Benioff zone inferred by inversion of earthquake focal mechanisms. J Geophys Res 31:355–372

    Google Scholar 

  • Christova C (2004) Stress field in the Ryukyu-Kyushu Wadati-Benioff zone by inversion of earthquake focal mechanisms. Tectonophysics 384:175–189

    Article  Google Scholar 

  • Christova C (2005) Space distribution of the contemporary stress field in the Izu-Bonin Wadati-Benioff zone by inversion of earthquake focal mechanisms. J Geophys Res 39:413–428

    Google Scholar 

  • Cunningham D (2005) Active intracontinental transpressional mountain building in the Mongolian Altai: defining a new class of orogen. Earth & Planetary Sci Let 240:436–444

    Article  Google Scholar 

  • Curray J (2005) Tectonics and history of the Andaman Sea region. J of Asian Earth Sci 25:187–232

    Article  Google Scholar 

  • Dasgumpta S, Mukhopadhyay M, Bhattacharya A, Jana T (2003) The geometry of the Burmese-Andaman subducting lithosphere. J Seismol Soc Jpn 7:155–174

    Article  Google Scholar 

  • DeMets C, Gordon R, Argus D, Stein S (1990) Current plate motions. Geophys J Int 101:425–478

    Article  Google Scholar 

  • Engdahl E, Villasenor A (2002) Global seismicity: 1900–1999. Int Handbook of Earthquake and Engineering Seismology 81a:665–690

    Article  Google Scholar 

  • England P, Molnar P (1997) The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults. Geophys J Int 130:551–582

    Article  Google Scholar 

  • Fan G, Ni J, Wallace T (1994) Active tectonics of the Pamirs and Karakoram. J Geophys Res 99:7131–7160

    Article  Google Scholar 

  • Fitch T (1972) Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and the western Pacific. J Geophys Res 77:4432–4460

    Article  Google Scholar 

  • Fournier M, Patriat P, Leroy S (2001) Reappraisal of the Arabia-India-Somalia triple junction kinematics. Earth & Planetary Sci Let 189:103–114

    Article  Google Scholar 

  • Garfunkel Z (1981) Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics. Tectonophysics 80:81–108

    Article  Google Scholar 

  • Gephart J, Forsyth W (1984) An improved method for determining the regional stress tensor using earthquake focal mechanism data: applications to the San Fernando earthquake sequence. J Geophys Res 89:9305–9320

    Article  Google Scholar 

  • Ghimire S, Kasahara M (2009) Spatial variation in seismotectonics and stress conditions across the Kurile and Japan trenches inferred from the analysis of focal mechanism data in Hokkaido, northern Japan. J Geophys Res 47:153–166

    Google Scholar 

  • Holt W, Ni J, Wallace T, Haines A (1991) The active tectonics of the eastern Himalayan syntaxis and surrounding regions. J Geophys Res 96:14595–14632

    Article  Google Scholar 

  • Holt W, Li M, Haines A (1995) Earthquake strain rates and instantaneous relative motions within central and eastern Asia. Geophys J Int 122:569–593

    Article  Google Scholar 

  • Hubert-Ferrari A, King G, Manignetti I, Armijo R, Meyer B, Tapponnier P (2003) Long-term elasticity in the continental lithosphere; modeling the Aden Ridge propagation and the Anatolian extrusion process. Geophys J Int 153:111–132

    Article  Google Scholar 

  • Huchon P, Khanbari K (2003) Rotation of the syn-rift stress field of the northern Gulf of Aden margin, Yemen. Tectonophysics 364:147–166

    Article  Google Scholar 

  • Jackson J, Priestley K, Allen M, Berberian M (2002) Active tectonics of the South Caspian Basin. Geophys J Int 148:214–245. doi:10.1046/j.1365-246X.2002.01005.x

    Google Scholar 

  • Kennet B, Cummins P (2005) The relationship of the seismic source and subduction zone structure for the 2004 December 26 Sumatra-Andaman earthquake. Earth and Planetary Sc Let 239:1–8

    Article  Google Scholar 

  • Khan P (2003) Stress state, seismicity and subduction geometries of the descending lithosphere below the Hindu kush and Pamir. Gondwana Res 6(4):867–877

    Article  Google Scholar 

  • Khan P (2007) Lithospheric deformation under pre- and post-seismic stress fields along the Nicobar-Sumatra subduction margin during 2004 Sumatra mega-event and its tectonic implications. Gondwana Res 12:468–475

    Article  Google Scholar 

  • Kiratzi A (2002) Stress tensor inversions along the westernmost North Anatolian Fault Zone and its continuation into the North Aegean Sea. Geophys J Int 151:360–376

    Article  Google Scholar 

  • Kiratzi A, Papazachos C (1995) Active deformation of the shallow part of the subducting lithosphere slab in the Southern Aegean. J Geophys Res 19(1):65–78

    Google Scholar 

  • Knapp C, Knapp J, Connor J (2004) Crustal-scale structure of the South Caspian Basin revealed by deep seismic reflection profiling. Mar Pet Geol 21:1073–1081

    Article  Google Scholar 

  • Leloup P, Lacassin R, Tapponnier P, Scharer U, Zhong D, Liu X, Zhang L, Ji S, Trinh P (1995) The Ailao Shan–Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics 251:3–84

    Article  Google Scholar 

  • Li Z, Biswas N, Tytgat G, Pulpan H, Wyss M (1995) Stress directions along the Alaska Wadati-Benioff zone from inversion of focal mechanism data. Tectonophysics 246:163–170

    Article  Google Scholar 

  • Liu M, Yang Y, Shen Z, Wang S, Mang M, Wan Y (2007) Active tectonics and intracontinental earthquakes in China: the kinematics and geodynamics. Geol Soc of America, special paper 425:299–318

    Google Scholar 

  • Lund B, Slunga R (1999) Stress tensor inversion using detailed microearthquake information and stability constrains: application to Olfus in southwest Iceland. J Geophys Res 104:14 947–14 964

    Article  Google Scholar 

  • Lyberis N, Manby G (1999) Oblique to orthogonal convergence across the Turan block in the post-Miocene. AAPG Bull 83(7):1135–1160, ISSN: 0149–1423

    Google Scholar 

  • Lyon-Caen H, Molnar P (1985) Gravity anomalies, flexure of the Indian plate, and the structure, support and evolution of the Himalaya and Ganga Basin. Tectonics 4:513–538

    Article  Google Scholar 

  • Maggi A, Jackson J, Priestley K, Baker C (2000) A re-assessment of focal depth distributions in southern Iran, the Tien Shan and northern India: do earthquakes really occur in the continental mantle? Geophys J Int 143:629–661

    Article  Google Scholar 

  • Mandal P, Horton S (2007) Relocation of aftershocks, focal mechanisms and stress inversion: Implications toward the seismo-tectonics of the causative fault zone of Mw7.6 2001 Bhuj earthquake (India). Tectonophysics 429:61–78

    Article  Google Scholar 

  • Manighetti I, Tapponnier P, Courtillot V, Gruszow S, Gillot P (1997) Propagation of rifting along the Arabia-Somalia plate boundary: the Gulfs of Aden and Tadjoura. J Geophys Res 102(2):2681–2710

    Article  Google Scholar 

  • McCaffrey R (1992) Oblique plate convergence, slip vectors, and forearc deformation. J Geophys Res 97(6):8905–8915

    Article  Google Scholar 

  • McKenzie D (1969) The relation between fault plane solutions for the earthquakes and the directions of the principal stresses. Bull Seismol Soc Am 59(2):591–601

    Google Scholar 

  • Mellors R, Pavlis G, Hamburger M, Al-Shukri H, Lukk A (1995) Evidence for a high-velocity slab associated with the Hindu Kush seismic zone. J Geophys Res 100:4057–4078

    Article  Google Scholar 

  • Michael A (1984) Determination of stress from slip data: faults and folds. J Geophys Res 89:11517–11526

    Article  Google Scholar 

  • Michael A (1987) Use of focal mechanisms to determine stress: a control study. J Geophys Res 92:357–368

    Article  Google Scholar 

  • Molnar P, Chen W (1983) Focal depths and fault plane solutions of earthquakes under the Tibetan plateau. J Geophys Res 88:1180–1196

    Article  Google Scholar 

  • Molnar P, Lyon-Caen H (1989) Fault plane solutions of earthquakes and active tectonics of the Tibetan plateau and its margins. Geophys J Int 99:123–153

    Article  Google Scholar 

  • Morley C (2002) A tectonic model for the Tertiary evolution of strike-slip faults and rift basins in SE Asia. Tectonophysics 347(4):189–215

    Article  Google Scholar 

  • Mosar J, Glasmacher U, Kangarli T, Bochud M, Rast A (2007) Mountain building in the Greater Caucasus: topography and uplift/exhumation. Geophys Res Abstr 9:07863, SRef-ID: 1607-7962/gra/EGU2007-A-07863

    Google Scholar 

  • Mosar J, Kangarli T, Bochud M, Glasmacher U, Rast A, Brunet MF, Sosson M (2010) Cenozoic-Recent tectonics and uplift in the Greater Caucasus: a perspective from Azerbaijan. Geol Soc Lond, Spec Publ 340:261–280

    Article  Google Scholar 

  • Mukhopadhyay M (1984) Seismotectonics of subduction and back-arc rifting under Andaman Sea. Tectonophysics 108:229–239

    Article  Google Scholar 

  • Nowroozi A (1971) Seismotectonics of the Persian Plateau, Eastern Turkey, Caucasus and Hindukush regions. Bull Seism Soc Am 61:317–341

    Google Scholar 

  • Omuralieva A, Nakajima J, Hasegawa A (2009) Three-dimensional seismic velocity structure of the crust beneath the central Tien Shan, Kyrgystan: implications for large- and small-scale mountain building. Tectonophysics 465:30–44

    Article  Google Scholar 

  • Papazachos B, Dimitriadis S, Panagiotopoulos D, Papazachos C, Papadimitriou E (2005) Deep structure and active tectonics of the southern Aegean volcanic arc. Dev of Volcanology 7:47–64

    Article  Google Scholar 

  • Pegler G, Das S (1998) Enhanced image of the Pamir-Hindukush seismic zone from located earthquake hypocenters. Geophys J Int 134:573–595

    Article  Google Scholar 

  • Petit C, Fournier M (2005) Present-day velocity and stress fields of the Amurian Plate from thin-shell finite-element modeling. Geophys J Int 160(1):358–370. doi:10.1111/j.1365-246X.2004.02486.x

    Article  Google Scholar 

  • Pivnik D, Nahm J, Tucker R, Smith G, Nyein K, Nyunt M, Maung P (1998) Polyphase deformation in a fore-arc/back-arc basin, Salin sub-basin, Myanmar (Burma). AAPG Bull 82:1837–1856

    Google Scholar 

  • Plenefisch T, Bonjer K (1997) The stress field in the Rhine Graben area inferred from earthquake focal mechanisms and estimation of frictional parameters. Tectonophysics 275:71–97

    Article  Google Scholar 

  • Qin C, Papazachos C, Papadimitriou E (2002) Velocity field for crustal deformation in China derived from seismic moment tensor summation of earthquakes. Tectonophysics 359(1):29–46

    Article  Google Scholar 

  • Radhakrishna M, Lasitha S, Mukhopadhyay M (2008) Seismicity, gravity anomalies and lithospheric structure of the Andaman arc, NE Indian Ocean. Tectonophysics 460:248–262

    Article  Google Scholar 

  • Roecker S (1982) Velocity structure of the Pamir-Hindu Kush region: possible evidence of subducted crust. J Geophys Res 87:945–959

    Article  Google Scholar 

  • Searle M, Hacker B, Bilham R (2001) The Hindu Kush seismic zone as a paradigm for the creation of ultrahigh-pressure diamond- and coesite-bearing continental rocks. J Geophys Res 109:143–153

    Google Scholar 

  • Sengor A, Altiner D, Cin A, Ustaomer T, Hsu K (1988) Origin and assembly of the Tethyside orogenic collage at the expense of Gondwana Land. Geol Soc Lond Spec Publ 37:119–181

    Article  Google Scholar 

  • Shirokova E (1979) Focal mechanism features inherent in earthquakes of Central Asia. Izv Akad Nauk SSSR, Fiz Zemli 10:44–57

    Google Scholar 

  • Simons W, Ambrosius B, Noomen R, Angermann D, Wilson P, Becker M, Reinhart E, Walpersdorf A, Vigny C (1999) Observing plate motions in Southeast Asia; geodetic results of the GEODYSSEA Project. Geophysical Res Let 26(14):2081–2084

    Article  Google Scholar 

  • Socquet A, Pubellier M (2005) Cenozoic deformation in western Yunnan (China-Myanmar border). J Asia Earth Sci 24:495–515

    Article  Google Scholar 

  • Socquet A, Vigny C, Chamot-Rooke N, Simons W, Rangin C, Ambrosius B (2006) India and Sunda plates motion and deformation along their boundary in Myanmar determined by GPS. J Geophys Res 111, B05406. doi:10.1029/2005JB003877

    Google Scholar 

  • Takada Y, Matsu'ura M (2004) A unified interpretation of vertical movement in Himalaya and horizontal deformation in Tibet on the basis of elastic and viscoelastic dislocation theory. Tectonophysics 383:105–131

    Article  Google Scholar 

  • Tapponnier P, Molnar P (1979) Active faulting and the Cenozoic tectonics of the Tien Shan, Mongolia, and Baykal regions. J Geophys Res 84:3425–3459

    Article  Google Scholar 

  • Tapponnier P, Mattauer M, Proust F, Cassaigneau C (1981) Mesozoic ophiolites, sutures and large scale tectonic movements in Afghanistan. Earth Planet Sci Lett 52:355–371

    Article  Google Scholar 

  • Taylor M, Yin A (2009) Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism. Geosphere 5(3):199–214

    Article  Google Scholar 

  • Taylor B, Goodliffe A, Martinez F (2009) Initiation of transform faults at rifted continental margins. Geoscience 341:428–438

    Article  Google Scholar 

  • Tiberi C, Diament M, Deverchere J, Petit-Mariani C, Mikhailov V, Tikhotsky S, Achauer A (2003) Deep structure of the Baikal rift zone revealed by joint inversion of gravity and seismology. J Geophys Res 108(B3):2133. doi:10.1029/2002JB001880

    Article  Google Scholar 

  • Vasseur G, Etchecopar A, Philip H (1983) Stress state inferred from multiple focal mechanisms. Ann Geophys 1(4–5):291–298

    Google Scholar 

  • Vavrycuk V (2014) Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophys J Int 199:69–77. doi:10.1093/gji/ggu224

    Article  Google Scholar 

  • Verma R, Reddy Y (1988) Seismicity, focal mechanisms and their correlation with the geological/tectonic history of the Tibetan plateau. Tectonophysics 156:107–131

    Article  Google Scholar 

  • Vinnik L, Lukk A, Nersesov I (1977) Nature of the intermediate seismic zone in the mantle of the Pamir-Hindu Kush. Tectonophysics 38:T9–T14

    Article  Google Scholar 

  • Walker R, Jackson J, Baker C (2004) Active faulting and seismicity of the Dasht-e-Bayaz region, eastern Iran. Geophys J Int 157:265–282

    Article  Google Scholar 

  • Walpersdorf A, Hatzfeld D, Nankali H, Tavakoli F, Nilforoushan F, Tatar M, Vernant P, Chery J, Masson F (2006) Difference in the GPS deformation pattern of North and Central Zagros (Iran). Geophys J Int 167:1077–1088

    Article  Google Scholar 

  • Wessel P, Smith W (1991) Free software helps map and display data, EOS Trans. AGU 72:441–446

    Google Scholar 

  • Yamini F, Hatzfeld D, Farahbod A, Paul A, Mokhtari M (2007) The diffuse transition between the Zagros continental collision and the Makran oceanic subduction (Iran): microearthquake seismicity and crustal structure. Geophys J Int 170:182–194

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the editor Jiri Zahradnik for his constructive suggestions, as well as the three anonymous reviewers for their helpful reviews and comments. Most maps were drafted using the GMT software developed by Wessel and Smith (1991).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Karagianni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM_1(a-g)

Sub-regions with political borders, capitals and names of major faults (Purple: thrust faults, yellow: normal faults, red: strike-slip faults). (DOCX 4824 kb)

ESM_2

(Appendix 1) Data-group code names per sub-region and the corresponding number of employed focal mechanisms for stress inversion. (DOCX 28 kb)

ESM_3

(Appendix 2) Results for all data groups determined by FMSI and FD-BSM algorithms. The stress field is denoted as C = compressional, E = extensional, SS = strike-slip, RE = radial extension, RC = radial compression, TT = transtensional or TP = transpressional. (DOCX 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karagianni, I., Papazachos, C.B., Scordilis, E.M. et al. Reviewing the active stress field in Central Asia by using a modified stress tensor approach. J Seismol 19, 541–565 (2015). https://doi.org/10.1007/s10950-015-9481-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-015-9481-4

Keywords

Navigation