Skip to main content
Log in

Thermodynamics of the Interaction of a Homologous Series of Amino Acids with Sorbitol

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The apparent molar volumes V 2,φ , apparent molar isentropic compressibilities K S,2,φ, and enthalpies of dilution of aqueous glycine, alanine, α-amino butyric acid, valine, and leucine have been determined in aqueous 1.0 and 2.0 mol⋅dm−3 sorbitol solutions at 298.15 K. These data have been used to calculate the infinite dilution standard partial molar volumes \(V_{2,m}^{0}\), partial molar isentropic compressibilities \(K_{S,2,m}^{0}\), and enthalpies of dilution Δdil H 0 of the amino acids in aqueous sorbitol, along with the standard partial molar quantities of transfer of the amino acids from water to aqueous sorbitol. The linear correlation of \(V_{2,m}^{0}\) for this homologous series of amino acids has been utilized to calculate the contribution to \(V_{2}^{0}\) of the charged end groups (\(\mathrm{NH}_{3}^{+}\), COO), the CH2 group, and other alkyl chains of the amino acids. The results for the standard partial molar volumes of transfer, compressibilites and enthalpies of dilution from water to aqueous sorbitol solutions have been correlated and interpreted in terms of ion–polar, ion–hydrophobic, and hydrophobic–hydrophobic group interactions. A comparison of these thermodynamic properties of transfer suggest that an enhancement of the hydrophilic/polar group interactions is operating in ternary systems of amino acid, sorbitol, and water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ou, W.B., Park, Y.D., Zhou, H.M.: Effect of osmolytes as folding aids on creatine kinase refolding pathway. Int. J. Biochem. Cell Biol. 34, 136–147 (2002)

    Article  CAS  Google Scholar 

  2. Dill, K.A.: Dominant forces in protein folding. Biochemistry 29, 7133–7155 (1990)

    Article  CAS  Google Scholar 

  3. Bolen, D.W.: Effects of naturally occurring osmolytes on protein stability and solubility: issues important in protein crystallization. Methods 34, 312–322 (2004)

    Article  CAS  Google Scholar 

  4. Gekko, K., Timasheff, S.N.: Mechanism of protein stabilization by glycerol: preferential hydration in glycerol–water mixtures. Biochemistry 20, 4667–4676 (1981)

    Article  CAS  Google Scholar 

  5. Petersen, S.B., Jonson, V., Fojan, P., Wimmer, R., Pedersen, S.: Sorbitol prevents the self-aggregation of unfolded lysozyme leading to an up to 13 °C stabilisation of the folded form. J. Biotechnol. 114, 269–278 (2004)

    Article  CAS  Google Scholar 

  6. Wimmer, R., Olsson, M., Petersen, M., Neves, N., Hatti-Kaul, R., Petersen, S.B., Muller, N.: Towards a molecular level understanding of protein stabilization: the interaction between lysozyme and sorbitol. J. Biotechnol 55, 85–100 (1997)

    Article  CAS  Google Scholar 

  7. Timasheff, S.N.: The control of protein stability and association by weak interactions with water. How do solvents affect these processes? Ann. Rev. Biophys. Biomol. Struct. 22, 67–97 (1993)

    Article  CAS  Google Scholar 

  8. Archer, D.G.: Thermodynamics properties of the NaCl + H2O system. II. Thermodynamics properties of NaCl(aq), NaCl. H2O(cr), and phase equilibria. J. Phys. Chem. Ref. Data 21, 793–829 (1992)

    Article  CAS  Google Scholar 

  9. Kikuchi, M., Sakurai, M., Nitta, K.: Partial molar volumes and adiabatic compressibilities of amino acids in dilute aqueous solutions at 5, 15, 25, 35, and 45 °C. J. Chem. Eng. Data 40, 935–942 (1995)

    Article  CAS  Google Scholar 

  10. Kharakoz, D.P.: Volumetric properties of proteins and their analogues in diluted water solutions. 2. Partial adiabatic compressibilities of amino acids at 15–70 °C. J. Phys. Chem. 95, 5634–5642 (1991)

    Article  CAS  Google Scholar 

  11. Desnoyers, J.E.: Structural effects in aqueous solutions: a thermodynamic approach. Pure Appl. Chem. 54, 1469–1478 (1982)

    Article  CAS  Google Scholar 

  12. Hedwig, G.R., Reading, J.F., Lilley, T.H.: Aqueous solutions containing amino acids and peptides: Part 27—Partial molal heat capacities and partial molar volume of some N-acetyl amino acids, some N-acetyl peptides and two peptides at 25 °C. J. Chem. Soc., Faraday Trans. 87, 1751–1758 (1991)

    Article  CAS  Google Scholar 

  13. Singh, S.K., Kundu, A., Kishore, N.: Interaction of some amino acids and glycine peptides with aqueous sodium dodecylsulfate and cetyltrimethyl ammonium bromide at T=298.15 K: A volumetric approach. J. Chem. Thermodyn. 36, 7–16 (2004)

    Article  CAS  Google Scholar 

  14. Wadi, R.K., Goyal, R.K.: Temperature dependence of apparent molar volumes and viscosity B-coefficients of amino acids in aqueous potassium thiocyanate solutions from 15 to 35 °C. J. Solution Chem. 21, 163–170 (1992)

    Article  CAS  Google Scholar 

  15. Wang, J., Yau, Z., Zhuo, K., Liu, J.: Partial molar volumes of some α-amino acids in aqueous sodium acetate solutions at 308.15 K. Biophys. Chem. 80, 179–188 (1999)

    Article  CAS  Google Scholar 

  16. Hakin, A.W., Duke, M.M., Marty, J.L., Presuss, K.E.: Some thermodynamic properties of aqueous amino acid systems at 288.15, 298.15, 313.15 and 328.15 K: group additivity analyses of standard-state volumes and heat capacities. J. Chem. Soc., Faraday Trans. 90, 2027–2035 (1994)

    Article  CAS  Google Scholar 

  17. Hakin, A.W., Duke, M.M., Groft, L.L., Marty, J.L., Rashfeldt, M.L.: Calorimetric investigations of aqueous amino acid and dipeptide systems from 288.15 to 328.15 K. Can. J. Chem. 73, 725–734 (1995)

    Article  CAS  Google Scholar 

  18. Singh, S.K., Kishore, N.: Partial molar volume of transfer of some amino acids and peptides from water to 1 mol⋅dm−3 aqueous sodium acetate, sodium sulfate, and sodium thiocyanate at 25 °C, and correlation of the transfer parameters to the thermal stability of hen egg white lysozyme and α-lactalbumin in the presence of these salts. J. Solution Chem. 132, 117–135 (2003)

    Article  Google Scholar 

  19. Franks, F., Quickenden, M.A., Reid, D.S., Watson, B.: Calorimetric and volumetric studies of dilute aqueous solutions of cyclic ethers derivatives. Trans. Faraday Soc. 66, 582–589 (1970)

    Article  CAS  Google Scholar 

  20. Millero, F.J., Surdo, A.L., Shin, C.: The apparent molar volumes and adiabatic compressibilities of aqueous amino acids at 25 °C. J. Phys. Chem. 82, 784–792 (1978)

    Article  CAS  Google Scholar 

  21. Berline, E., Pallansh, M.J.: Densities of several proteins and L-amino acids in dry state. J. Phys. Chem. 72, 1887–1889 (1968)

    Article  Google Scholar 

  22. Teresawa, S., Itsuki, H., Arakawa, S.: Contribution of hydrogen bonds to the partial molar volumes of nonionic solutes in water. J. Phys. Chem. 79, 2345–2351 (1975)

    Article  Google Scholar 

  23. Bondi, A.: van der Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964)

    Article  CAS  Google Scholar 

  24. Bondi, A.: Free volumes and free rotation in simple liquids and liquid saturated hydrocarbons. J. Phys. Chem. 58, 929–939 (1954)

    Article  CAS  Google Scholar 

  25. Shahidi, F., Farell, P.G., Edwards, J.T.: Partial molar volume of organic compounds in water carbohydrates. J. Solution Chem. 5, 807–816 (1976)

    Article  CAS  Google Scholar 

  26. Banipal, T.R., Sehgal, G.: Partial molal adiabatic compressibilities of transfer of some amino acids and peptides from water to aqueous sodium chloride and aqueous glucose solutions. Thermochem. Acta 262, 175–183 (1995)

    Article  CAS  Google Scholar 

  27. Bhat, R., Kishore, N., Ahluwalia, J.C.: Thermodynamics of some amino acids and peptides from water to aqueous glucose and sucrose solutions at 298.15 K. J. Chem. Soc., Faraday Trans. I 84, 2651–2665 (1988)

    Article  CAS  Google Scholar 

  28. Sharma, R., Kishore, N.: Interaction of some amino acids with aqueous osmoprotectant proline at 298.15 K. J. Solution Chem. 35, 231–249 (2006)

    Article  CAS  Google Scholar 

  29. Jasra, R.V., Ahluwalia, J.C.: Thermodynamics of transfer of sorbitol and mannitol from water to aqueous solutions of urea, guanidine hydrochloride and sodium chloride. J. Chem. Soc., Faraday Trans. 1, 1677–1687 (1982)

    Google Scholar 

  30. Jasra, R.V., Ahluwalia, J.C.: Enthalpies, enthalpies of solution, partial molal heat capacities and apparent molal volumes of sugars and polyols in water. J. Solution Chem. 11, 325–338 (1982)

    CAS  Google Scholar 

  31. Xu, L., Wang, X., Lin, R., Sun, D.: Enthalpies of dilution of glycine and L-alanine in aqueous 1-propanol solutions at T=298.15 K. J. Chem. Thermodyn. 37, 371–375 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nand Kishore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jha, N.S., Kishore, N. Thermodynamics of the Interaction of a Homologous Series of Amino Acids with Sorbitol. J Solution Chem 39, 1454–1473 (2010). https://doi.org/10.1007/s10953-010-9601-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-010-9601-2

Keywords

Navigation