Skip to main content
Log in

Extremal Theory for Spectrum of Random Discrete Schrödinger Operator. III. Localization Properties

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study the asymptotic localization properties with high probability of the Kth eigenfunction (associated with the Kth largest eigenvalue, K⩾1 fixed) of the multidimensional Anderson Hamiltonian in torus V increasing to the whole of lattice. Denote by z K,V V the site at which the Kth largest value of potential is attained. It is well-known that if the tails of potential distribution are heavier than the double exponential function and satisfies additional regularity and continuity conditions at infinity, then the Kth eigenfunction is asymptotically delta-function at the site z τ(K),V (localization centre) for some random τ(K)=τ V (K)⩾1. We study the asymptotic behavior of the index τ V (K) by distinguishing between three cases of the tails of potential distribution: (i) for the “heavy tails” (including Gaussian), τ V (K) is asymptotically bounded; (ii) for the light tails, but heavier than the double exponential, the index τ V (K) unboundedly increases like |V|o(1); (iii) finally, for the double exponential tails with high disorder, the index τ V (K) behaves like a power of |V|. For Weibull’s and fractional-double exponential types distributions associated with the case (ii), we obtain the first order expansion formulas for logτ V (K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astrauskas, A.: On high-level exceedances of i.i.d. random fields. Stat. Probab. Lett. 52, 271–277 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Astrauskas, A.: Poisson-type limit theorems for eigenvalues of finite-volume Anderson Hamiltonian. Acta Appl. Math. 96, 3–15 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Astrauskas, A.: From extreme values of i.i.d. random fields to extreme eigenvalues of finite-volume Anderson Hamiltonian. Unpublished manuscript (2007). Available at http://www.mii.lt/files/astrauskas_extr.pdf

  4. Astrauskas, A.: Extremal theory for spectrum of random discrete Schrödinger operator. I. Asymptotic expansion formulas. J. Stat. Phys. 131, 867–916 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  5. Astrauskas, A.: Extremal theory for spectrum of random discrete Schrödinger operator. II. Distributions with heavy tails. J. Stat. Phys. 146, 98–117 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Astrauskas, A., Molchanov, S.A.: Limit theorems for the ground states of the Anderson model. Funct. Anal. Appl. 26, 305–307 (1992)

    Article  MathSciNet  Google Scholar 

  7. Balkema, A.A., Klüppelberg, C., Resnick, S.I.: Densities with Gaussian tails. Proc. Lond. Math. Soc. 66(3), 568–588 (1993)

    Article  MATH  Google Scholar 

  8. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  9. Bishop, M., Wehr, J.: Ground state energy of the one-dimensional discrete random Schrödinger operator with Bernoulli potential. J. Stat. Phys. 147, 529–541 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Biskup, M., König, W.: Long-time tails in the parabolic Anderson model with bounded potential. Ann. Probab. 29, 636–682 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Biskup, M., König, W.: Eigenvalue order statistics for random Schrödinger operators with double exponential tails (2012, in preparation)

  12. Gärtner, J., König, W.: The parabolic Anderson model. In: Deuschel, J.-D., Greven, A. (eds.) Interacting Stochastic Systems, pp. 153–179. Springer, Berlin (2005)

    Chapter  Google Scholar 

  13. Gärtner, J., Molchanov, S.A.: Parabolic problems for the Anderson model. II. Second-order asymptotics and structure of high peaks. Probab. Theory Relat. Fields 111, 17–55 (1998)

    Article  MATH  Google Scholar 

  14. Germinet, F., Klopp, F.: Spectral statistics for the discrete Anderson model in the localized regime. In: Minami, N., Ueki, N. (eds.) Spectra of Random Operators and Related Topics (2011). arXiv:1006.4427

    Google Scholar 

  15. Germinet, F., Klopp, F.: Enhanced Wegner and Minami estimates and eigenvalue statistics of random Anderson models at spectral edges. Ann. Henri Poincaré (to appear). arXiv:1111.1505v1 [math-ph] (2011)

  16. Germinet, F., Klopp, F.: Spectral statistics for random Schrödinger operators in the localized regime. arXiv:1011.1832v3 [math.SP] (2012)

  17. van der Hofstad, R., König, W., Mörters, P.: The universality classes in the parabolic Anderson model. Commun. Math. Phys. 267, 307–353 (2006)

    Article  ADS  MATH  Google Scholar 

  18. Killip, R., Nakano, F.: Eigenfunction statistics in the localized Anderson model. Ann. Henri Poincaré 8(1), 27–36 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Kirsch, W.: An invitation to random Schrödinger operator. In: Random Schrödinger Operators. Panor. Synthéses, vol. 25, pp. 1–119. Soc. Math. France, Paris (2008)

    Google Scholar 

  20. Klopp, F.: Precise high energy asymptotics for the integrated density of states of an unbounded random Jacobi matrix. Rev. Math. Phys. 12(4), 575–620 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. König, W., Wolff, T.: The parabolic Anderson model. Preprint (2011)

  22. Leadbetter, M.R., Lindgren, G., Rootzén, H.: Extremes and Related Properties of Random Sequences and Processes. Springer, New York (1983)

    Book  MATH  Google Scholar 

  23. Minami, N.: Local fluctuations of the spectrum of a multidimensional Anderson tight binding model. Commun. Math. Phys. 177, 709–725 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Minami, N.: Theory of point processes and some basic notions in energy level statistics. In: Probability and Mathematical Physics. CRM Proceedings and Lecture Notes, vol. 42, pp. 353–398. Am. Math. Soc., Providence (2007)

    Google Scholar 

  25. Molchanov, S., Zhang, H.: The parabolic Anderson model with long range basic Hamiltonian and Weibull type random potential. In: Deuschel, J.-D., Gentz, B., König, W., von Renesse, M., Scheutzow, M., Schmock, U. (eds.) Probability in Complex Physical Systems (In Honour of Erwin Bolthausen and Jürgen Gärtner). Springer Proceedings in Mathematics, vol. 11, pp. 13–31. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  26. Rootzén, H.: Extreme value theory for moving average processes. Ann. Probab. 14, 612–652 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stolz, G.: An introduction to the mathematics of Anderson localization. Contemp. Math. 552, 71–108 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

I thank the referees for their comments on improving the presentation of this paper. I also thank the referees for bringing Refs. [15, 16, 20, 24, 25] to my attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Astrauskas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astrauskas, A. Extremal Theory for Spectrum of Random Discrete Schrödinger Operator. III. Localization Properties. J Stat Phys 150, 889–907 (2013). https://doi.org/10.1007/s10955-012-0669-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0669-5

Keywords

Navigation