Skip to main content
Log in

Equivalence of Non-equilibrium Ensembles and Representation of Friction in Turbulent Flows: The Lorenz 96 Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We construct different equivalent non-equilibrium statistical ensembles in a simple yet instructive \(N\)-degrees of freedom model of atmospheric turbulence, introduced by Lorenz in 1996. The vector field can be decomposed into an energy-conserving, time-reversible part, plus a non-time reversible part, including forcing and dissipation. We construct a modified version of the model where viscosity varies with time, in such a way that energy is conserved, and the resulting dynamics is fully time-reversible. For each value of the forcing, the statistical properties of the irreversible and reversible model are in excellent agreement, if in the latter the energy is kept constant at a value equal to the time-average realized with the irreversible model. In particular, the average contraction rate of the phase space of the time-reversible model agrees with that of the irreversible model, where instead it is constant by construction. We also show that the phase space contraction rate obeys the fluctuation relation, and we relate its finite time corrections to the characteristic time scales of the system. A local version of the fluctuation relation is explored and successfully checked. The equivalence between the two non-equilibrium ensembles extends to dynamical properties such as the Lyapunov exponents, which are shown to obey to a good degree of approximation a pairing rule. These results have relevance in motivating the importance of the chaotic hypothesis. in explaining that we have the freedom to model non-equilibrium systems using different but equivalent approaches, and, in particular, that using a model of a fluid where viscosity is kept constant is just one option, and not necessarily the only option, for describing accurately its statistical and dynamical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. In \(3\) dimensions the natural cut-off would be the Kolmogorov scale; in \(2\) dimensions the cascade is inverse and the interpretation is more subtle, see [10].

  2. This is a function \(\gamma (p)\) such that the probability the \(p\in \Delta \) is asymtpotic as \(\tau \rightarrow \infty \) to \(const\,e^{\tau \max _{p\in \Delta }\gamma (p) }\): in Anosov systems it is analytic, [17, 41], in \(p\) for \(|p|<p^*\) for some \(p^*\); in time reversal symmetric Anosov systems \(p^*\ge 1\).

  3. Also featuring modest deviations , compared to the size of the strongly \(R\)-dependent Lyapunov exponents, from what we would have obtained (a constant -1 value) had the inviscid, unforced dynamics been Hamiltonian.

References

  1. Abramov, R.V., Majda, A.: New approximations and tests of linear fluctuation-response for chaotic nonlinear forced-dissipative dynamical systems. J. Nonlinear Sci. 18, 303–341 (2008). doi:10.1007/s00332-007-9011-9

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory. Meccanica 15(1), 9–20 (1980)

    Article  ADS  MATH  Google Scholar 

  3. Blender, R., Wouters, J., Lucarini, V.: Avalanches, breathers, and flow reversal in a continuous Lorenz-96 model. Phys. Rev. E 88, 013201 (Jul 2013)

  4. Bowman, A.W., Azzalini, A.: Applied Smoothing Techniques for Data Analysis. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  5. Dettman, C., Morriss, G.: Proof of conjugate pairing for an isokinetic thermostat. Phys. Rev. E 53, 5545–5549 (1996)

    Article  ADS  Google Scholar 

  6. Dressler, U.: Symmetry property of the lyapunov exponents of a class of dissipative dynamical systems with viscous damping. Phys. Rev. A 38, 2103–2109 (1988)

    Article  ADS  Google Scholar 

  7. Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617655 (1985)

    Google Scholar 

  8. Gallavotti, G.: Reversible Anosov diffeomorphisms and large deviations. Math. Phys. Electron. J. 1, 1–12 (1995)

    MathSciNet  Google Scholar 

  9. Gallavotti, G.: Extension of Onsager’s reciprocity to large fields and the chaotic hypothesis. Phys. Rev. Lett. 77, 4334–4337 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Gallavotti, G.: Dynamical ensembles equivalence in fluid mechanics. Phys. D 105, 163–184 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gallavotti, G.: Breakdown and regeneration of time reversal symmetry in nonequilibrium statistical mechanics. Phys. D 112, 250–257 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gallavotti, G.: Fluctuations and entropy driven space-time intermittency in Navier–Stokes fluids. In: Fokas, E., Grigoryan, A., Kibble, T., Zegarlinski, B. (eds.) Mathematical Physics 2000. World Scientific, London (2000)

    Google Scholar 

  13. Gallavotti, G.: Non equilibrium in statistical and fluid mechanics. ensembles and their equivalence. Entropy driven intermittency. J. Math. Phys. 41, 4061–4081 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Gallavotti, G.: Foundations of Fluid Dynamics, vol. 2. Springer, Berlin (2005)

    Google Scholar 

  15. Gallavotti, G.: Microscopic chaos and macroscopic entropy in fluids. J. Stat. Mech. 2006:P10011 (+9) (2006).

  16. Gallavotti, G.: Aspects of Lagrange’s Mechanics and their Legacy. arXiv:1305.3438, pp. 1–23 (2013).

  17. Gallavotti, G., Bonetto, F., Gentile, G.: Aspects of the Ergodic, Qualitative and Statistical Theory of Motion. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  18. Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694–2697 (1995)

    Article  ADS  Google Scholar 

  19. Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in stationary states. J. Stat. Phys. 80, 931–970 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Gallavotti, G., Rondoni, L., Segre, E.: Lyapunov spectra and nonequilibrium ensembles equivalence in 2D fluid. Phys. D 187, 358–369 (2004)

    Article  MathSciNet  Google Scholar 

  21. Hallerberg, Sarah, Pazo, Diego, Lopez, Juan M., Rodriguez, Miguel A.: Logarithmic bred vectors in spatiotemporal chaos: structure and growth. Phys. Rev. E 81, 066204 (Jun 2010)

  22. Karimi, A., Paul, M.R.: Extensive chaos in the Lorenz-96 model. Chaos: an Interdisciplinary. J. Nonlinear Sci. 20(4), 043105 (2010)

    Google Scholar 

  23. Livi, R., Politi, A., Ruffo, S.: Distribution of characteristic exponents in the thermodynamic limit. J. Phys. A 19, 2033–2040 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Lorenz, E.: Deterministic non periodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  ADS  Google Scholar 

  25. Lorenz, E.: Designing chaotic models. J. Atmos. Sci. 62, 1574–1587 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  26. Lorenz, E., Emanuel, K.: Optimal sites for supplementary weather observations: simulation with a small model. J. Atmos. Sci. 55, 399–414 (1998)

    Article  ADS  Google Scholar 

  27. Lucarini, V.: Response theory for equilibrium and non-equilibrium statistical mechanics: causality and generalized Kramers–Kronig relations. J. Stat. Phys. 131(3), 543–558 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Lucarini, V.: Evidence of dispersion relations for the nonlinear response of Lorenz 63 system. J. Stat. Phys. 134, 38140 (2009)

    Google Scholar 

  29. Lucarini, V., Blender, R., Herbert, C., Pascale, S., Ragone, F., Wouters, J. Mathematical and physical ideas for climate science. ArXiv e-prints, Nov 2013.

  30. Lucarini, V., Sarno, S.: A statistical mechanical approach for the computation of the climatic response to general forcings. Nonlinear Process. Geophys. 18, 7–28 (2011)

    Article  ADS  Google Scholar 

  31. Orrell, D. Model error and predictability over different timescales in the Lorenz ’96 systems. J. Atmos. Sci. 60(17), 2219–2228 (2003). 24 Mar 2014.

  32. Pope, Stephen: Turbulent Flows. Cambridge University Press, Cambrdge (2000)

    Book  MATH  Google Scholar 

  33. Ragone, F., Lucarini, V., Lunkeit, F. A new framework for climate sensitivity and prediction. ArXiv e-prints, March 2014.

  34. Ruelle, D.: Chaotic Evolution and Strange Attractors. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  35. Ruelle, D.: General linear response formula in statistical mechanics, and the fluctuation–dissipation theorem far from equilibrium. Phys. Lett. A 245, 220–224 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Ruelle, D.: A review of linear response theory for general differentiable dynamical systems. Nonlinearity 22, 855–870 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1971)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Sagaut, Pierre: Large Eddy Simulation for Incompressible Flows. Springer, New York (2006)

    MATH  Google Scholar 

  39. Sagaut, P., Garnier, E., Adams, N.: Large Eddy Simulation for Compressible Flows. Springer, New York (2009)

    MATH  Google Scholar 

  40. She, Z.S., Jackson, E.: Constrained Euler system for Navier Stokes turbulence. Phys. Rev. Lett. 70(9), 1255–1258 (1993)

    Article  ADS  Google Scholar 

  41. Sinai, Y.G.: Lectures in Ergodic Theory. Lecture Notes in Mathematics. Princeton University Press, Princeton (1977)

    Google Scholar 

  42. Smagorinsky, J.: Large eddy simulation of complex engineering and geophysical flows. In: Galperin, B., Orszag, S.A. (eds.) Evolution of Physical Oceanography, pp. 3–36. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  43. Trevisan, Anna, D’Isidoro, Massimo, Talagrand, Olivier: Four-dimensional variational assimilation in the unstable subspace and the optimal subspace dimension. Q. J. R. Meteorol. Soc. 136(647), 487–496 (2010)

    Google Scholar 

  44. Trevisan, A., Uboldi, F. Assimilation of standard and targeted observations within the unstable subspace of the observation-analysis-forecast cycle system. J. Atmos. Sci. 61(1), 103–113 (2004). 24 Mar 2014.

  45. Wilks, D.S.: Effects of stochastic parametrizations in the Lorenz ’96 system. Q. J. R. Meteorol. Soc. 131(606), 389–407 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Lucarini.

Appendices

Appendix 1

figure a
figure b
figure c
figure d
figure e
figure f
figure g

Appendix 2

figure h
figure i
figure j
figure k
figure l
figure m
figure n
figure o
figure p
figure q

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallavotti, G., Lucarini, V. Equivalence of Non-equilibrium Ensembles and Representation of Friction in Turbulent Flows: The Lorenz 96 Model. J Stat Phys 156, 1027–1065 (2014). https://doi.org/10.1007/s10955-014-1051-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1051-6

Keywords

Navigation