Skip to main content

Advertisement

Log in

Turbulence: Does Energy Cascade Exist?

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

To answer the question whether a cascade of energy exists or not in turbulence, we propose a set of correlation functions able to test if there is an irreversible transfert of energy, step by step, from large to small structures. These tests are applied to real Eulerian data of a turbulent velocity flow, taken in the wind grid tunnel of Modane, and also to a prototype model equation for wave turbulence. First we demonstrate the irreversible character of the flow by using multi-time correlation function at a given point of space. Moreover the unexpected behavior of the test function leads us to connect irreversibility and finite time singularities (intermittency). Secondly we show that turbulent cascade exists, and is a dynamical process, by using a test function depending on time and frequency. The cascade shows up only in the inertial domain where the kinetic energy is transferred more rapidly (on average) from the wavenumber \(k_{1}\) to \(k_{2}\) than from \(k_{1}\) to \(k'_{2}\) larger than \(k_{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. See also the note “Hydrodynamical turbulence as a problem in non-equilibrium statistical mechanics” published on the web (www.ihes.fr/ruelle/PUBLICATIONS/turbulenceX)

References

  1. Kolmogorov, A.N.: The local structure of turbulence in uncompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSR 30, 301–305 (1941)

    ADS  Google Scholar 

  2. Kolmogorov, A.N.: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 82 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Ruelle, D.: Non equilibrium statistical mechanics of turbulence. J. Stat. Phys. 157, 205–218 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  5. Taylor, G.I.: The spectrum of turbulence. Proc. R. Soc. Lond A 164, 476–490 (1938)

    Article  ADS  MATH  Google Scholar 

  6. Wilczek, M., Xu, H., Narita, Y.: A note on Taylor’s hypothesis under large-scale flow variantions. Nonlinear Process. Geophys. 21, 645–649 (2014)

    Article  ADS  Google Scholar 

  7. Toschi, F., Bodenschatz, E.: Lagrangian properties of particles in turbulence. Ann. Rev. Fluid Mech. 41, 375–404 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Jucha, J., Xu, H., Pumir, A., Bodenschatz, E.: Time-reversal-symmetry breaking in turbulence. Phys. Rev. Lett. 113, 054501 (2014)

    Article  ADS  Google Scholar 

  9. Pomeau, Y.: Symétrie des fluctuations dans le renversement du temps. J. Phys. (Paris) 43, 859 (1982)

    Article  Google Scholar 

  10. Majda, A.J., McLaughlin, D.W., Tabak, E.G.: A one-dimensional model for dispersion wave turbulence. J. Nonlinear Sci. 7, 9–44 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405426 (1931)

    MATH  Google Scholar 

  12. La Porta, A., Voth, G.A., Crawford, A.M., Alexander, J., Bodenschatz, E.: Fluid particles acceleration in fully developed turbulence. Nature 409, 1017–1019 (2001). Note however that this paper deals with the acceleration of a Lagrangian marker, something rather different of the time derivative of the Eulerian velocity measured at a point

  13. Pomeau, Y.: Singular evolution of a perfect fluid. Comptes Rendus l’Académie Sci 321, 407–411 (1995)

    MATH  Google Scholar 

  14. von Neumann, J.: The point source solution’, Collected Works, edited by A. J. Taub, Vol. 6, pp. 219–237. Permagon Press, Elmsford, N.Y. (1963)

  15. Taylor, G.I.: The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc. R. Soc. A 201(1065), 159–174 (1950)

  16. Sedov, L.I.: Propagation of strong shock waves. J. Appl. Math. Mech. 10, 241–250 (1946)

    Google Scholar 

  17. Y. Gagne, “Etude expérimentale de l’intermittence et des singularités dans le plan complexe en turbulence dveloppée”, Université de Grenoble 1 (1987)

  18. Kahalerras, H., Malécot, Y., Gagne, Y., Castaing, B.: Intermittency and Reynold number. Phys. Fluids 10, 910 (1998). doi:10.1063/1.869613

    Article  ADS  Google Scholar 

  19. Benney, D.J., Saffman, P.G.: Nonlinear interactions of random waves in a dispersive medium. Proc. R. Soc. Lond. A 289, 301 (1966)

    Article  ADS  Google Scholar 

  20. Zakharov, V.E., Filonenko, N.N.: Dokl. Akad. Nauk SSSR 170, 1292 (1966) [English transl. in Sov. Math. Dokl.]

  21. Zakharov, V.E.: Zh. Eksper. Teoret. Fiz. 51, 686 (1966) [English transl. in Sov. Phys. JETP 24 (1967) 455]

  22. Zakharov, V.E., Filonenko, N.N.: Zh. Prikl. Mekh. I Tekn. Fiz. 5, 62 (1967) [English transl. in J. Appl. Mech. Tech. Phys.]

  23. Zakharov, V.E., L’vov, V.S., Falkovich, G.: Kolmogorov Spectra of Turbulence I. Springer, Berlin (1992)

  24. Newell, A.C., Rumpf, B.: Wave Turbulence. Annu. Rev. Fluid Mech. 43, 59 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Nazarenko, S.: Wave Turbulence. Lecture Notes in Physics, vol. 825. Springer, Berlin (2011)

  26. Falcon, E., Laroche, C., Fauve, S.: Observation of gravity-capillary wave turbulence. Phys. Rev. Lett. 98, 094503 (2007)

    Article  ADS  Google Scholar 

  27. Falcon, C., Falcon, E., Bortolozzo, U., Fauve, S.: Capillary wave turbulence on a spherical fluid surface in low gravity. Europhys. Lett. 86, 14002 (2009)

    Article  ADS  Google Scholar 

  28. Dyachenko, S., Newell, A.C., Pushkarev, A., Zakharov, V.E.: Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation. Phys. D 57, 96 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Galtier, S., Nazarenko, S.V., Newell, A.C., Pouquet, A.: A weak turbulence theory for incompressible magnetohydrodynamics. J. Plasma Phys. 63, 447 (2000)

    Article  ADS  MATH  Google Scholar 

  30. Düring, G., Josserand, C., Rica, S.: Weak Turbulence for a vibrating plate: can one hear a kolmogorov spectrum? Phys. Rev. Lett. 97, 025503 (2006)

    Article  ADS  Google Scholar 

  31. Boudaoud, A., Cadot, O., Odille, B., Touzé, C.: Observation of wave turbulence in vibrating plates. Phys. Rev. Lett. 100, 234504 (2008)

    Article  ADS  Google Scholar 

  32. Mordant, N.: Are there waves in elastic wave turbulence? Phys. Rev. Lett. 100, 234505 (2008)

    Article  ADS  Google Scholar 

  33. Zakharov, V., Dias, F., Pushkarev, A.: One-dimensional wave turbulence. Phys. Rep. 398, 1–65 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  34. Aubourg, Q., Mordant, N.: Nonlocal resonances in weak turbulence of gravity-capillary waves. Phys. Rev. Lett. 114, 144501 (2015)

    Article  ADS  Google Scholar 

  35. Appell, P.E.: Eléments d’analyse mathématique á l’usage des ingénieurs et des physiciens : cours professé l’Ecole centrale des arts et manufactures, (1921) Gauthier-Villard Paris

  36. Pomeau, Y., Pumir, A.: Remarques sur le probléme de la ligne de contact mobile. CRAS 299, 909 (1984)

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Yves Gagne for having provided us the Eulerian velocity data of Modane’s experiment, which were taken by him et his collaborators, and we thank ONERA for facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Josserand.

Additional information

Personal note by C. J. : It is a great honor for my colleagues and myself to contribute to this Special Memorial Issue Dedicated to Leo Kadanoff. The work presented here trace back in fact to my stay in Chicago as a post-doc with Leo, where I was investigating how irreversible dynamics could emerge from reversible systems. I remember emotionally my discussions with Leo during my postdoc where his advices were always of great help, often concluding with his characteristic voice by “I would (not) encourage you to go in that direction”! My two years in Chicago have widely influenced my scientific activity thanks to Leo’s personal advices and to the outstanding atmosphere there whose Leo was at the heart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Josserand, C., Le Berre, M., Lehner, T. et al. Turbulence: Does Energy Cascade Exist?. J Stat Phys 167, 596–625 (2017). https://doi.org/10.1007/s10955-016-1642-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1642-5

Keywords

Navigation