Skip to main content
Log in

Exact Penalty and Optimality Condition for Nonseparable Continuous Piecewise Linear Programming

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Utilizing compact representations for continuous piecewise linear functions, this paper discusses some theoretical properties for nonseparable continuous piecewise linear programming. The existence of exact penalty for continuous piecewise linear programming is proved, which allows us to concentrate on unconstrained problems. For unconstrained problems, we give a sufficient and necessary local optimality condition, which is based on a model with universal representation capability and hence applicable to arbitrary continuous piecewise linear programming. From the gained optimality condition, an algorithm is proposed and evaluated by numerical experiments, where the theoretical properties are illustrated as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Beale, E.M.L., Coen, P.J., Flowerdew, A.D.J.: Separable programming applied to an ore purchasing problem. J. R. Stat. Soc., Ser. C, Appl. Stat. 14, 89–101 (1965)

    Article  Google Scholar 

  2. Beale, E.M.L.: Numerical methods: the theory of separable programming. In: Abadie, J., Vajda, S. (eds.) Nonlinear Programming, pp. 174–177. North-Holland, Amsterdam (1967)

    Google Scholar 

  3. Conn, A.R., Mongeau, M.: Discontinuous piecewise linear optimization. Math. Program. 80, 315–380 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Fourer, R.: A simplex algorithm for piecewise-linear programming I: Derivation and proof. Math. Program. 33, 204–233 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fourer, R.: A simplex algorithm for piecewise-linear programming II: Finiteness, feasibility and degeneracy. Math. Program. 41, 281–315 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fourer, R.: A simplex algorithm for piecewise-linear programming III: Computational analysis and applications. Math. Program. 53, 213–235 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Padberg, M.W.: Approximation separable nonlinear functions via mixed zero-one programs. Oper. Res. Lett. 27, 1–5 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Croxton, K.L., Gendron, B., Magnanti, T.L.: Models and methods for merge-in-transit operations. Transp. Sci. 37, 1–22 (2003)

    Article  Google Scholar 

  9. Keha, A.B., de Farias, I.R., Nemhauser, G.L.: Models for representing piecewise linear cost functions. Oper. Res. Lett. 32, 44–48 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Vielma, J.P., Keha, A.B., Nemhauser, G.L.: Nonconvex, lower semicontinuous piecewise linear optimization. Discrete Optim. 5, 467–488 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Vielma, J.P., Ahmed, S., Nemhauser, G.: Mixed-integer models for nonseparable piecewise-linear optimization: unifying framework and extensions. Oper. Res. 58, 303–315 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chua, L.O., Kang, S.M.: Section-wise piecewise-linear functions: canonical representation, properties, and applications. Proc. IEEE 65, 915–929 (1977)

    Article  Google Scholar 

  13. Breiman, L.: Hinging hyperplanes for regression, classification and function approximation. IEEE Trans. Inf. Theory 39, 999–1013 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Julián, P., Desages, A., Agamennoni, O.: High-level canonical piecewise linear representation using a simplicial partition. IEEE Trans. Circuits, I 46, 463–480 (1999)

    Article  MATH  Google Scholar 

  15. Wang, S., Sun, X.: Generalization of hinging hyperplanes. IEEE Trans. Inf. Theory 12, 4425–4431 (2005)

    Article  Google Scholar 

  16. Wang, S., Huang, X., Junaid, K.M.: Configuration of continuous piecewise-linear neural networks. IEEE Trans. Neural Netw. 19, 1431–1445 (2008)

    Article  Google Scholar 

  17. Xu, J., Huang, X., Wang, S.: Adaptive hinging hyperplanes and its applications in dynamic system identification. Automatica 45, 2325–2332 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tarela, J.M., Martinez, M.V.: Region configurations for realizability of lattice piecewise-linear models. Math. Comput. Model. 30, 17–27 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Croxton, K.L., Gendron, B., Magnanti, T.L.: A comparison of mixed-integer programming models for nonconvex piecewise linear cost minimization problems. Manag. Sci. 49, 1268–1273 (2003)

    Article  MATH  Google Scholar 

  20. Keha, A.B., de Farias, I.R., Nemhauser, G.L.: A branch-and-cut algorithm without binary variables for nonconvex piecewise linear optimization. Oper. Res. 54, 847–858 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Beale, E.M.L., Tomlin, J.A.: Special facilities in a general mathematical programming system for non-convex problems using ordered sets of variables. In: Proceedings of the Fifth International Conference on Operational Research, pp. 447–454 (1970)

    Google Scholar 

  22. Misener, R., Floudas, C.A.: Piecewise-linear approximations of multidimensional functions. J. Optim. Theory Appl. 145, 120–147 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Toriello, A., Vielma, J.P.: Fitting piecewise linear continuous functions. Report of Georigia Institue of Technology (2010)

  24. Ernst, S.: Hinging hyperplane trees for approximation and identification. In: Proceedings of the 37th IEEE Conference on Decision and Control, pp. 1266–1271 (1998)

    Google Scholar 

  25. Pucar, P., Sjöberg, J.: On the hinge-finding algorithm for hingeing hyperplanes. IEEE Trans. Inf. Theory 44, 1310–1319 (1998)

    Article  MATH  Google Scholar 

  26. Karniel, A., Meir, R., Inbar, G.F.: Polyhedral mixture of linear experts for many-to-one mapping inversion and multiple controllers. Neurocomputing 37, 31–49 (2001)

    Article  MATH  Google Scholar 

  27. Özkan, L., Kothare, M.V., Georgakis, C.: Control of a solution copolymerization reactor using multi-model predictive control. Chem. Eng. Sci. 58, 1207–1221 (2003)

    Article  Google Scholar 

  28. Ramírez, D.R., Camacho, E.F., Arahal, M.R.: Implementation of min-max MPC using hinging hyperplanes: application to a heat exchanger. Control Eng. Pract. 12, 1197–1205 (2004)

    Article  Google Scholar 

  29. Zanma, T., Fuke, K., Ma, S.C., Ishida, M.: Simultaneous identification of piecewise affine systems and number of subsystems using mixed logical dynamical systems theory. Electron. Commun. Jpn. 91, 1–10 (2008)

    Google Scholar 

  30. Julián, P., Desages, A., D’Amico, B.: Orthonormal high-level canonical PWL functions with applications to model reduction. IEEE Trans. Circuits, I 47, 702–712 (2000)

    Article  Google Scholar 

  31. Cervantes, A.L., Agamennoni, O.E., Figueroa, J.L.: A nonlinear model predictive control system based on wiener piecewise linear models. J. Process Control 13, 655–666 (2003)

    Article  Google Scholar 

  32. Castro, L.R., Figueroa, J.L., Agamennoni, O.E.: An NIIR structure using HL-CPWL functions. Lat. Am. Appl. Res. 35, 161–166 (2005)

    Google Scholar 

  33. Shafiee, G., Arefi, M.M., Jahed-Motlagh, M.R., Jalali, A.A.: Nonlinear predictive control of a polymerization reactor based on piecewise linear wiener model. Chem. Eng. J. 143, 282–292 (2008)

    Article  Google Scholar 

  34. Wen, C., Wang, S., Jin, X., Ma, X.: Identification of dynamic systems using piecewise-affine basis function models. Automatica 43, 1824–1831 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chikkula, Y., Lee, J.H., Ogunnaike, B.A.: Dynamically scheduled MPC of nonlinear processes using hinging hyperplane models. AIChE J. 44, 2658–2674 (1998)

    Article  Google Scholar 

  36. Xu, J., Huang, X., Wang, S.: Nonlinear model predictive control using adaptive hinging hyperplanes model. In: Proceedings of the 48th IEEE Conference on Decision and Control, pp. 2598–2603 (2009)

    Google Scholar 

  37. Huang, X., Xu, J., Wang, S.: Operation optimization for centrifugal chiller plants using continuous piecewise linear programming. In: Proceedings of 2010 IEEE International Conference on Systems Man and Cybernetics, pp. 1121–1126 (2010)

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was supported jointly by the National Natural Science Foundation of China (61074118, 60974008, 61104218, 041306020) and the Research Fund of Doctoral Program of Higher Education (200800030029).

The authors appreciate the reviewers for their insightful comments and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuning Wang.

Additional information

Communicated by Gianni Di Pillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X., Xu, J. & Wang, S. Exact Penalty and Optimality Condition for Nonseparable Continuous Piecewise Linear Programming. J Optim Theory Appl 155, 145–164 (2012). https://doi.org/10.1007/s10957-012-0032-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0032-7

Keywords

Navigation