Skip to main content
Log in

Decomposition of Differential Games with Multiple Targets

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper provides a decomposition technique for the purpose of simplifying the solution of certain zero-sum differential games. The games considered terminate when the state reaches a target, which can be expressed as the union of a collection of target subsets considered as ‘multiple targets’; the decomposition consists in replacing the original target by each of the target subsets. The value of the original game is then obtained as the lower envelope of the values of the collection of games, resulting from the decomposition, which can be much easier to solve than the original game. Criteria are given for the validity of the decomposition. The paper includes examples, illustrating the application of the technique to pursuit/evasion games and to flow control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Isaacs, R.: Differential Games. Wiley, New York (1965)

    MATH  Google Scholar 

  2. Cacace, S., Cristiani, E., Falcone, M., Picarelli, A.: A patchy dynamic programming scheme for a class of Hamilton–Jacobi–Bellman equations. SIAM J. Sci. Comput. 34(5), A2625–A2649 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Festa A.: Reconstruction of Independent Sub-domains for a Class of Hamilton Jacobi Equations and its Application to Parallel Calculus. ESAIM M2AN (2015). doi:10.1051/m2an/201507

  4. Subbotin, A.I.: Generalized Solutions of First-Order PDEs. Birkhäuser, Boston (1995)

    Book  Google Scholar 

  5. Festa A., Vinter R.B.: A decomposition technique for pursuit evasion games with many pursuers. In: Proceedings of the 52nd IEEE Control and Decision Conference (CDC), pp. 5797–5802 (2012)

  6. Falcone, M.: Numerical methods for differential games via PDEs. Int. Game Theor. Rev. 8(2), 231–272 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Elliott, R.J., Kalton, N.J.: Values in differential games. Bull. Am. Math. Soc. 78(3), 427–431 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Birkhäuser, Boston (1997)

    Book  MATH  Google Scholar 

  9. Barles, G.: Solutions de viscositè des equations d’Hamilton–Jacobi. Springer, Berlin (1998)

    Google Scholar 

  10. Krasovskii, N.N., Subbotin, A.I.: Game-Theoretical Control Problems. Springer, New York (1988)

    Book  Google Scholar 

  11. Bardi, M., Raghavan, T.E.S., Parthasarathy, T.: Stochastic and Differential Games: Theory and Numerical Methods. Birkhäuser, Boston (1999)

    Book  MATH  Google Scholar 

  12. Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control. Birkhäuser, Boston (2004)

    MATH  Google Scholar 

  13. Ledyaev, Y.S., Treiman, J.S.: Sub-and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions. Russ. Math. Surv. 67(2), 345–373 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Vinter, R.: Optimal Control. Birkhäuser, Boston (2000)

    MATH  Google Scholar 

  15. Friedman, A.: Differential Games. Wiley, New York (1971)

    MATH  Google Scholar 

  16. Chodun, W.: Differential games of evasion with many pursuers. J. Math. Anal. Appl. 142(2), 370–389 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ivanov, R.P., Ledyaev, Y.S.: Time optimality for the pursuit of several objects with simple motion in a differential game. Trudy Mat. Inst. Steklova 158, 87–97 (1981)

    MathSciNet  MATH  Google Scholar 

  18. Ibragimov, G.I.: Optimal pursuit of an evader by countably many pursuers. Differ. Equ. 41(5), 627–635 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pshenichnii, B.N.: Simple pursuit by several objects. Cybern. Syst. Anal. 12(3), 484–485 (1976)

    MathSciNet  Google Scholar 

  20. Vidal, R., Shakernia, O., Kim, J., Shim, H., Sastry, S.: Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation. IEEE Trans. Robot. Autom. 18(5), 662–669 (2002)

    Article  Google Scholar 

  21. Campo, P.J.: Model predictive optimal averaging level control. AIChE J. 35(4), 579–591 (1989)

    Article  Google Scholar 

  22. Kantor, J.C.: Non-linear sliding mode controller and objective function for surge tanks. Int. J. Control 50, 2025–2047 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. McDonald, K.A., McAvoy, T.J.: Optimal averaging level control. AIChE J. 32, 75–86 (1986)

    Article  Google Scholar 

  24. Falugi, P., Kountouriotis, C., Vinter, R.B.: Differential games controllers that confine a system to a safe region in the state space, with applications to surge tank control. IEEE Trans. Autom. Control 57(11), 2778–2788 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by the European Union under the 7th Framework Programme FP7-PEOPLE-2010-ITN SADCO, ‘Sensitivity Analysis for Deterministic Controller Design’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Vinter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Festa, A., Vinter, R.B. Decomposition of Differential Games with Multiple Targets. J Optim Theory Appl 169, 848–875 (2016). https://doi.org/10.1007/s10957-016-0908-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0908-z

Keywords

Mathematics Subject Classification

Navigation