Skip to main content
Log in

The Norm Resolvent Convergence for Elliptic Operators in Multi-Dimensional Domains with Small Holes

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider a second order elliptic operator with variable coefficients in a multidimensional domain with a small hole and some classical boundary condition on the hole boundary. We show that the resolvent of this operator converges to the resolvent of the limit operator in the domain without holes in the sense of the norm of bounded operators acting from L2 to \( {W}_2^1 \). For the convergence rate we obtain sharp estimates relative to the smallness order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Samarskii, “On influence of fixing on eigenfrequences of closed volumes” [in Russian], Dokl. AN SSSR 63, No. 6, 631–634 (1948).

  2. A. M. Il’in, “A boundary value problem for the second order elliptic equation in a domain with a narrow slit. 1. The two-dimensional case,” Math. USSR, Sb. 28, No. 4, 459–480 (1976).

    Article  MATH  Google Scholar 

  3. A. M. Il’in, “A boundary value problem for the second order elliptic equation in a domain with a narrow slit. 2. Domain with a small cavity,” Math. USSR, Sb. 32, No. 2, 227-244 (1977).

    Article  MATH  Google Scholar 

  4. A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Am. Math. Soc., Providence, RI (1992).

    Book  MATH  Google Scholar 

  5. W. G. Mazja, S. A. Nasarow, and B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten. 1 and 2 [in Germman], Akademie-Verlag, Berlin (1991); English transl.: V. Maz’ya, S. Nazarov, and B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vols. 1, 2, Birkhäuser, Basel (2000).

  6. V. G. Mazya, S. A. Nazarov, and B. A. Plamenevski, “Asymptotic expansions of the eigenvalues of boundary value problems for the Laplace operator in domains with small holes,” Math. USSR, Izv. 24, No. 2, 321-345 (1985).

    Article  Google Scholar 

  7. S. A. Nazarov, “Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold,” Sib. Math. J. 51, No. 5, 866–878 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Sh. Birman, “On homogenization procedure for periodic operators near the edge of an internal gap,” St. Petersbg. Math. J. 15, No. 4, 507–513 (2004).

    Article  MATH  Google Scholar 

  9. M. Sh. Birman and T. A. Suslina, “Second order periodic differential operators. Threshold properties and homogenization,” St. Petersbg. Math. J. 15, No. 5, 639–714 (2004).

    Article  MATH  Google Scholar 

  10. M. Sh. Birman and T. A. Suslina, “Homogenization of a multidimensional periodic elliptic operator in a neighborhood of an edge of an inner gap,” J. Math. Sci., New York 136, No. 2, 3682–3690 (2006).

    Article  MathSciNet  Google Scholar 

  11. V. V. Zhikov, “On operator estimates in homogenization theory,” Dokl. Math. 72, No. 1, 534–538 (2005).

    MathSciNet  MATH  Google Scholar 

  12. V. V. Zhikov, “Spectral method in homogenization theory,” Proc. Steklov Inst. Math. 250, 85-94 (2005).

    MathSciNet  MATH  Google Scholar 

  13. M. Sh. Birman and T. A. Suslina, “Homogenization with corrector for periodic differential operators. Approximation of solutions in the Sobolev class H 1(ℝd),” St. Petersbg. Math. J. 18, No. 6, 857–955 (2007).

    Article  MATH  Google Scholar 

  14. S. E. Pastukhova, “Operator estimates in nonlinear problems of reiterated homogenization,” Proc. Steklov Inst. Math. 261, 214–228 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  15. E. S. Vasilevskaya and T. A. Suslina, “Homogenization of parabolic and elliptic periodic operators in L 2(ℝd) with the first and second correctors taken into account,” St. Petersbg. Math. J. 24, No. 2, 185–261 (2013).

    Article  MATH  Google Scholar 

  16. V. V. Zhikov and S. E. Pastukhova, “Operator estimates in homogenization theory,” Russ. Math. Surv. 71, No. 3, 417–511 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  17. S. E. Pastukhova, “The Neumann problem for elliptic equations with multiscale coefficients: operator estimates for homogenization,” Sb. Math. 207, No. 3, 418–443 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  18. S. E. Pastukhova, “Operator error estimates for homogenization of fourth order elliptic equations,” St. Petersbg. Math. J. 28, No. 2, 273–289 (2017).

    Article  MATH  Google Scholar 

  19. T. A. Suslina, “Homogenization of the Dirichlet problem for higher-order elliptic equations with periodic coefficients,” St. Petersbg. Math. J. 29, No. 2, 325–362 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Borisov and G. Cardone, “Homogenization of the planar waveguide with frequently alternating boundary conditions,” J. Phys. A: Math. Gen. 42, No. 36, 365–205 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Borisov, R. Bunoiu, and G. Cardone, “On a waveguide with frequently alternating boundary conditions: homogenized Neumann condition,” Ann. Henri Poincarè 11, No. 8, 1591–1627 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Borisov, R. Bunoiu, and G. Cardone, “On a waveguide with an infinite number of small windows,” C. R. Math. 349, No. 1–2, 53–56 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Borisov, R. Bunoiu, and G. Cardone, “Homogenization and asymptotics for a waveguide with an infinite number of closely located small windows,” J. Math. Sci., New York 58, No. 6, 59–68 (2011).

    MathSciNet  MATH  Google Scholar 

  24. D. Borisov, R. Bunoiu, and G. Cardone, “Waveguide with non-periodically alternating Dirichlet and Robin conditions: homogenization and asymptotics,” Z. Angew. Math. Phys. 64, No. 3. 439–472 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Borisov, G. Cardone, L. Faella, and C. Perugia, “Uniform resolvent convergence for a strip with fast oscillating boundary,” J. Differ. Equ. 255, No. 12, 4378-4402 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Borisov, G. Cardone, and T. Durante, “Homogenization and uniform resolvent convergence for elliptic operators in a strip perforated along a curve,” Proc. R. Soc. Edinb. Sect. A-Math. 146, No. 6, 1115–1158 (2016).

    Article  MATH  Google Scholar 

  27. D. I. Borisov, “On a PT-symmetric waveguide with a pair of small holes,” Proc. Steklov Inst. Math. 281, Suppl. 1, 5–21 (2013).

    Article  MathSciNet  Google Scholar 

  28. O. A. Ladyzhenskaya and N. N. Uraltseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York etc. (1968).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Borisov.

Additional information

Dedicated to the memory of Vasilii Vasil’evich Zhikov

Translated from Problemy Matematicheskogo Analiza 92, 2018, pp. 69-81.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, D.I., Mukhametrakhimova, A.I. The Norm Resolvent Convergence for Elliptic Operators in Multi-Dimensional Domains with Small Holes. J Math Sci 232, 283–298 (2018). https://doi.org/10.1007/s10958-018-3873-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-3873-2

Navigation