Skip to main content
Log in

Local Asymptotic Normality Property for Ornstein–Uhlenbeck Processes with Jumps Under Discrete Sampling

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We address the issue of the local asymptotic normality property and the Fisher information for three characterizing parameters of Ornstein–Uhlenbeck processes with jumps under low frequency and high frequency discrete sampling with expanding observation window. The martingale method with the Kolmogorov backward equation and the Malliavin calculus are employed to derive explicit formulas for derivatives of the likelihood ratio function in the form of conditional expectation, which serve as essential tools for justifying the passage to the limit by the dominated convergence theorem. This approach makes it possible to carry out the proof without specifying the law of the jump component and without knowing the tail behaviors of the transition probability density and, as a consequence, to keep various types of jump structure within the scope of this article. The Fisher information under high-frequency sampling is essentially identical to the one for purely Gaussian Ornstein–Uhlenbeck processes due to the dominance of the Gaussian component over the jump component in the short time framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aït-Sahalia, Y., Jacod, J.: Fisher information for discretely sampled Lévy processes. Econometrica 76(4), 727–761 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aït-Sahalia, Y., Jacod, J.: Is Brownian motion necessary to model high frequency data? Ann. Stat. 38(5), 3093–3128 (2010)

    Article  MATH  Google Scholar 

  3. Barndorff-Nielsen, O.E., Shephard, N.: Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc. Ser. B 63(2), 167–241 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15(1), 1–89 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dacunha-Castelle, D., Florens-Zmirou, D.: Estimation of the coefficient of a diffusion from discrete observations. Stochastics 19(4), 263–284 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Elworthy, K.D., Li, X.M.: Formulae for the derivatives of heat semigroups. J. Funct. Anal. 125(1), 252–286 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gikhman, I.I., Skorokhod, A.V.: Stochastic Differential Equations. Springer, New York (1972)

    Book  MATH  Google Scholar 

  8. Gobet, E.: Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approach. Bernoulli 7(6), 899–912 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gobet, E.: LAN property for ergodic diffusions with discrete observations. Probab. Stat. 38(5), 711–737 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Gringorten, I.I.: Estimating finite time maxima and minima of a stationary Gaussian Ornstein–Uhlenbeck process by Monte Carlo simulation. J. Am. Stat. Assoc. 63, 1517–1521 (1968)

    Google Scholar 

  11. Jacod, J.: Inference for stochastic processes. In: Aït-Sahalia, Y., Hansen, L.P. (eds.) Handbook of Financial Econometrics: Applications. North-Holland, Amsterdam (2009)

    Google Scholar 

  12. Jongbloed, G., van der Meulen, F.H., van der Vaart, A.W.: Nonparametric inference for Lévy-driven Ornstein–Uhlenbeck processes. Bernoulli 11(5), 759–791 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, New York (2001)

    Google Scholar 

  14. Kawai, R.: Sensitivity analysis and density estimation on the Hobson-Rogers stochastic volatility model. Int. J. Theor. Appl. Financ. 12(3), 283–295 (2009)

    Article  MATH  Google Scholar 

  15. Kawai, R.: On singularity of Fisher information matrix for stochastic processes under high frequency sampling. In: Cangiani, A. et al. (eds.) Numerical Mathematics and Advanced Applications. Springer (2011). ISBN 978-3-642-33133-6. http://www.springer.com/mathematics/computational+science+%26+engineering/book/978-3-642-33133-6

  16. Kawai, R.: On the likelihood function of small time variance gamma Lévy processes. J. Stat. Plan. Infer. (2012) (under review)

  17. Kawai, R., Kohatsu-Higa, A.: Computation of Greeks and multidimensional density estimation for asset price models with time-changed Brownian motion. Appl. Math. Financ. 17(4), 301–321 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kawai, R., Masuda, H.: Local asymptotic normality for Meixner Lévy processes under high-frequency sampling. Stat. Probab. Lett. 81(4), 460–469 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kawai, R., Masuda, H.: Exact discrete sampling of finite variation tempered stable Ornstein–Uhlenbeck processes. Monte Carlo Methods Appl. 17(3), 279–300 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kawai, R., Masuda, H.: Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling, ESAIM. Probab. Stat. (2012). doi:10.1051/ps/2011101

  21. Kawai, R., Masuda, H.: Infinite variation tempered stable Ornstein–Uhlenbeck processes with discrete observations. Commun. Stat. Simul. Comput. 41(1), 125–139 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Le Cam, L., Yang, G.: Asymptotics in Statistics: Some Basic Concepts, 2nd edn. Springer, New York (2000)

    Book  MATH  Google Scholar 

  23. Long, H.: Least squares estimator for discretely observed Ornstein–Uhlenbeck processes with small Lévy noises. Stat. Probab. Lett. 79(19), 2076–2085 (2009)

    Article  MATH  Google Scholar 

  24. Luschgy, H.: Local asymptotic mixed normality for semimartingale experiments. Probab. Theor. Relat Fields 92(2), 151–176 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Masuda, H.: Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density. J. Jpn. Stat. Soc. 39(1), 49–75 (2009)

    Article  MathSciNet  Google Scholar 

  26. Neumann, N.H., Reiß, M.: Nonparametric estimation for Lévy processes from low-frequency observations. Bernoulli 15(1), 223–248 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nualart, D.: The Malliavin Calculus and Related Topics, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  28. Rosiński, J.: Tempering stable processes. Stoch. Process. Appl. 117(6), 677–707 (2007)

    Article  MATH  Google Scholar 

  29. Roussas, G.G.: Contiguity of Probability Measures: Some Applications in Statistics. Cambridge University Press, London (1972)

    Book  MATH  Google Scholar 

  30. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  31. Strasser, H.: Mathematical Theory of Statistics. Statistical Experiments and Asymptotic Decision Theory. Walter de Gruyter& Co., Berlin (1985)

    Book  MATH  Google Scholar 

  32. Szimayer, A., Maller, R.: Testing for mean reversion in processes of Ornstein–Uhlenbeck type. Stat. Inference Stoch. Process. 7(2), 95–113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tuckwell, H.: A study of some diffusion models of population growth. Theor. Popul. Biol. 5(3), 345–357 (1974)

    Article  MATH  Google Scholar 

  34. Tuckwell, H.: Introduction to Theoretical Neurobiology, vol. 2: Nonlinear and Stochastic Theories. Cambridge University Press, Cambridge (1988)

    Book  Google Scholar 

  35. Uhlenbeck, G.E., Ornstein, L.S.: On the theory of Brownian motion. Phys. Rev. 36(5), 823–841 (1930)

    Article  MATH  Google Scholar 

  36. Vasicek, O.: An equilibrium characterisation of the term structure. J. Financ. Econ. 5(2), 177–188 (1977)

    Article  Google Scholar 

  37. van der Vaart, A.W.: Asymptotic Statistics. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  38. Woerner, J.: Local asymptotic normality for the scale parameter of stable processes. Stat. Probab. Lett. 63(1), 61–65 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Woerner, J.: Estimating the skewness in discretely observed Lévy processes. Econom. Theor. 20(5), 927–942 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiichiro Kawai.

Additional information

This study was carried out largely while the author was based at University of Leicester, UK.

Appendix: Basic Facts on the Malliavin Calculus

Appendix: Basic Facts on the Malliavin Calculus

We here summarize basic facts on the Malliavin calculus on the Gaussian space in brief. (For details and more notations, we refer the reader to the monograph [27] and [17].) Fix \(T>0\) and we denote, as before, by \((\fancyscript{F}^1_t)_{t\in [0,T]}\) and \((\fancyscript{F}^2_t)_{t\in [0,T]}\) the filtrations generated respectively by \(\{W_t:\,t\in [0,T]\}\) and \(\{\mu ({\text{ d}}z,{\text{ d}}t):\,t\in [0,T],\,z\in \mathbb R _0\}\) in (2.1) and (4.3). Let \(F\) be a random vector in \(\mathbb R ^d\), measurable with respect to the union \(\fancyscript{F}^1_T\cup \fancyscript{F}^2_T\). We denote by \(D_{\cdot }\) the Gaussian Malliavin derivative, and denote by \(\delta \) the Gaussian Skorohod integral over \((0,T]\), that is, for a suitable smooth stochastic process \(\{G_t:t\ge 0\}\) in \(\mathbb R ^d\),

$$\begin{aligned} \delta (G_{\cdot }):=\int \limits _0^T G_s \delta W_s, \end{aligned}$$

where the multivariate integral is taken componentwise. Both the operators \(D\) and \(\delta \) are linked by the equality

$$\begin{aligned} \delta \left(\left\langle F, G_{\cdot }\right\rangle \right)= \left\langle \delta \left(G_{\cdot }\right),F\right\rangle -\int \limits _0^T\left\langle D_t F, G_t\right\rangle {\text{ d}}t, \end{aligned}$$

given the \(\sigma \)-field \(\fancyscript{F}_T^2\). Moreover, taking the conditional expectation, we get the duality;

$$\begin{aligned} \mathbb E \left[\int \limits _0^T\left\langle D_t F,G_t\right\rangle {\text{ d}}t\,\Big |\fancyscript{F}^2_T\right] =\mathbb E \left[\left\langle \delta (G_{\cdot }),F\right\rangle \,\big |\fancyscript{F}^2_T\right]. \end{aligned}$$
(5.1)

Here, we have assumed that \(F\in \mathbb D ^{1,2}\) and \(G\in Dom(\delta )\).

We next give an integration by parts formula, in the one dimension framework for simplicity, which is a key tool to integrate the derivative in the following conditional expectation for \(g\in C^1_b(\mathbb R ;\mathbb R )\),

$$\begin{aligned} \mathbb E \left[g^{\prime }(X)Z\,\big |\fancyscript{F}^2_T\right]=\mathbb E \left[g(X)H\,\big |\fancyscript{F}^2_T\right], \end{aligned}$$

where \(X, Z\), and \(H\) are suitable random variables. By the chain rule of the Malliavin derivative, we have that given the \(\sigma \)-field \(\fancyscript{F}^2_T\) and for \(t\in [0,T]\),

$$\begin{aligned} \left(D_t g(X)\right) Z h_t=g^{\prime }(X) Z h_t D_t X, \end{aligned}$$

where \(\{h_t:t\in [0,T]\}\) is a suitable “smooth” stochastic process such that the terms appearing below are well defined. Integration over \([0,T]\) leads to

$$\begin{aligned} g^{\prime }(X)Z=\int \limits _0^T \left(D_t g(X)\right) \frac{Z h_t}{\int \limits _0^T h_s D_sX {\text{ d}}s}{\text{ d}}t. \end{aligned}$$

Using the duality (5.1), we get

$$\begin{aligned} \mathbb E \left[g^{\prime }(X)Z\,\big |\fancyscript{F}^2_T\right]&= \mathbb E \left[\int \limits _0^T D_t g(X) \frac{Z h_t}{\int \nolimits _0^T h_s D_sX{\text{ d}}s}{\text{ d}}t \,\Big |\fancyscript{F}^2_T\right]\nonumber \\&= \mathbb E \left[g(X) \delta \left(\frac{Z h_{\cdot }}{\int \nolimits _0^T h_s D_sX{\text{ d}}s}\right)\,\Big |\fancyscript{F}^2_T\right]. \end{aligned}$$
(5.2)

This identity is often called the (conditional) integration-by-parts formula.

Finally, we describe the transformation of the Skorohod integral \(\delta W_t\) to the standard Ito integral \({\text{ d}}W_t\) on the Gaussian space (that is, again with the jump component \(\{Z_t:\,t\in [0,T]\}\) frozen). In short, the transformation is carried out as either

$$\begin{aligned} \int \limits _0^T \int \limits _0^T f(t,s){\text{ d}}W_s\delta W_t=\int \limits _0^T \int \limits _0^t \frac{f(t,s)+f(s,t)}{2}{\text{ d}}W_s {\text{ d}}W_t, \end{aligned}$$
(5.3)

or

$$\begin{aligned}&\int \limits _0^T \int \limits _0^T \int \limits _0^s f(t,s,u){\text{ d}}W_u {\text{ d}}W_s\delta W_t\nonumber \\&\quad =\int \limits _0^T \int \limits _0^t \int \limits _0^s\frac{f(t,s,u)+f(t,u,s)+f(s,t,u)+f(s,u,t)+f(u,t,s)+f(u,s,t)}{3!}{\text{ d}}W_u {\text{ d}}W_s {\text{ d}}W_t,\nonumber \\ \end{aligned}$$
(5.4)

for suitable deterministic functions \(f(t,s)\) and \(f(t,s,u)\). In our context, the integral \(\int _0^t (t-s)e^{-\lambda (t-s)}{\text{ d}}Z_s\) in the first component of \(\nabla _{\theta }X_t(\theta )\) is treated as a deterministic function in \(t\), as the Poisson component is independent of the Brownian component and is set to be frozen when performing the relevant operations. We refer the reader to Sect. 1.3 of Nualart [27] for details of this transformation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawai, R. Local Asymptotic Normality Property for Ornstein–Uhlenbeck Processes with Jumps Under Discrete Sampling. J Theor Probab 26, 932–967 (2013). https://doi.org/10.1007/s10959-012-0455-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-012-0455-y

Keywords

Mathematics Subject Classification (2010)

Navigation