Skip to main content
Log in

Annealed Asymptotics for Brownian Motion of Renormalized Potential in Mobile Random Medium

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Motivated by the study of the directed polymer model with mobile Poissonian traps or catalysts and the stochastic parabolic Anderson model with time-dependent potential, we investigate the asymptotic behavior of

$$\begin{aligned} \mathbb {E}\otimes \mathbb {E}_0\exp \left\{ \pm \ \theta \int \limits ^t_0\bar{V}(s,B_s)\hbox {d}s\right\} \quad (t\rightarrow \infty ) \end{aligned}$$

where \(\theta >0\) is a constant, \(\overline{V}\) is the renormalized Poisson potential of the form

$$\begin{aligned} \overline{V}(s,x)=\int \limits _{\mathbb {R}^d}\frac{1}{|y-x|^p}\left( \omega _s(\hbox {d}y)-\hbox {d}y\right) , \end{aligned}$$

and \(\omega _s\) is the measure-valued process consisting of independent Brownian particles whose initial positions form a Poisson random measure on \(\mathbb {R}^d\) with Lebesgue measure as its intensity. Different scaling limits are obtained according to the parameter \(p\) and dimension \(d\). For the logarithm of the negative exponential moment, the range of \(\frac{d}{2}<p<d\) is divided into five regions with various scaling rates of the orders \(t^{d/p}\), \(t^{3/2}\), \(t^{(4-d-2p)/2}\), \(t\log t\) and \(t\), respectively. For the positive exponential moment, the limiting behavior is studied according to the parameters \(p\) and \(d\) in three regions. In the subcritical region (\(p<2\)), the double logarithm of the exponential moment has a rate of \(t\). In the critical region (\(p=2\)), it has different behavior over two parts decided according to the comparison of \(\theta \) with the best constant in the Hardy inequality. In the supercritical region \((p>2)\), the exponential moments become infinite for all \(t>0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bass, R., Chen, X., Rosen, J.: Large deviations for Riesz potentials of additive processes. Annales de l’Institut Henri Poincare 45, 626–666 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. van den Berg, M., Bolthausen, E., den Hollander, F.: Brownian survival among Poissonian traps with random shapes at critical intensity. Probab. Theory Relat. Fields 132, 163–202 (2005)

    Article  MATH  Google Scholar 

  3. Bezerra, S., Tindel, S., Viens, F.: Superdiffusivity for a Brownian polymer in a continuous Gaussian environment. Ann. Probab. 36, 1642–1675 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Borkar, V.S.: Probability Theory: An Advanced Course. Springer, New York (1995)

    Book  MATH  Google Scholar 

  5. Bramson, M., Lebowitz, J.L.: Asymptotic behavior of densities in dimfusion-dominated annihilation reactions. Phys. Rev. Lett. 61, 2397 (1988)

    Article  Google Scholar 

  6. Bramson, M., Lebowitz, J.L.: Asymptotic behavior of densities for two-particle annihilating random walks. J. Stat. Phys. 62, 297–372 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carmona, R., Molchanov, S.: Parabolic Anderson Problem and Intermittency. American Mathematical Society, Providence (1994)

    Google Scholar 

  8. Carmona, R., Viens, F.G.: Almost-sure exponential behavior of a stochastic Anderson model with continuous space parameter. Stoch. Rep. 62, 251–273 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen, X.: Random Walk Intersections: Large Deviations and Related Topics. Mathematical Surveys and Monographs, 157. American Mathematical Society, Providence (2009)

  10. Chen, X.: Quenched asymptotics for Brownian motion of renormalized Poisson potential and for the related Anderson models. Ann. Probab. 40(4), 1436–1482 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, X., Kulik, A.M.: Brownian motion and parabolic Anderson model in a renormalized Poisson potential. Ann. Inst. Henri Poincaré Probab. Stat. 48(3), 631–660 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, X., Kulik, A.M.: Asymptotics of negative exponential moments for annealed Brownian motion in a renormalized Poisson potential. Int. J. Stoch. Anal., Art. ID 803683 (2011)

  13. Chen, X., Rosinski, J.: Spatial Brownian motion in renormalized Poisson potential: a critical case. (preprint) (2013)

  14. Dalang, R.C., Mueller, C.: Intermittency properties in a hyperbolic Anderson problem. Annales de l’Institut Henri Poincare 45, 1150–1164 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Donoghue, W.: Distributions and Fourier Transforms. Academic Press, New York (1969)

    MATH  Google Scholar 

  16. Donsker, M.D., Varadhan, S.R.S.: Asymptotics for the Wiener sausage. Commun. Pure Appl. Math. 28(4), 525–565 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  17. Drewitz, A., Sousi, P., Sun, R.: Symmetric rearrangements around infinity with applications to Lévy processes. Probab. Theory Relat. Fields 158(3–4), 637–664 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Drewitz, A., Gärtner, J., Ramírez, A., Sun, R.: Survival probability of a random walk among a Poisson system of moving traps. In: Probability in Complex Physical Systems-In Honour of Erwin Bolthausen and Jürgen Gärtner, pp. 119–158. Springer Proceedings in Mathematics 11 (2012)

  19. Durrett, R.: Stochastic Calculus: A Pratical Introduction. CRC Press, Boca Raton (1996)

    Google Scholar 

  20. Florescu, I., Viens, F.: Sharp estimation of the almost-sure Lyapunov exponent for the Anderson model in continuous space. Probab. Theory Relat. Fields 135, 603–644 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fukushima, R.: Second order asymptotics for Brownian motion among a heavy tailed Poissonian potential. Markov Processes and Related Fields (to appear)

  22. Gärtner, J., den Hollander, F.: Intermittency in a catalytic random medium. Ann. Probab. 34, 2219–2287 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gärtner, J., den Hollander, F., Mailland, G.: Intermittency on catalysts. Trends in Stochastic analysis, London Math. Soc. Lecture Note Ser., vol. 353, pp. 235–248. Cambridge University Press, Cambridge (2009)

  24. Gärtner, J., den Hollander, F., Mailland, G.: Intermittency of catalysts: voter model. Ann. Probab. 38, 2066–2102 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gärtner, J., den Hollander, F., Molchanov, S.A.: Diffusion in an annihilating environment. Nonlinear Anal. 7, 25–64 (2006)

    Article  MATH  Google Scholar 

  26. Gärtner, J., König, W.: Moment asymptotics for the continuous parabolic Anderson model. Ann. Appl. Probab. 10, 192–217 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Gärtner, J., König, W., Molchanov, S.A.: Almost sure asymptotics for the continuous parabolic Anderson model. Probab. Theory Relat. Fields 118, 547–573 (2000)

    Article  MATH  Google Scholar 

  28. Germinet, F., Hislop, P., Klein, A.: Localization for Schrödinger operators with Poisson random potential. J. Eur. Math. Soc. 9, 577–607 (2007)

    MATH  MathSciNet  Google Scholar 

  29. Hardy, G., Pólya, G., Littlewood, J.E.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  30. Komorowski, T.: Brownian motion in a Poisson obstacle field. Séminaire Bourbaki 1998/99, 91–111 (2000)

    MathSciNet  Google Scholar 

  31. Moreau, M., Oshanin, G., Bénichou, O., Coppey, M.: Pascal principle for diffusion-controlled trapping reactions. Phys. Rev. E 67, 045104(R) (2003)

    Google Scholar 

  32. Moreau, M., Oshanin, G., Bénichou, O., Coppey, M.: Lattice theory of trapping reactions with mobile species. Phys. Rev. E 69, 046101 (2004)

    Google Scholar 

  33. Opic, B., Kufner, A.: Hardy-Type Inequalities. Pitman Research Notes in Math. 219, Longman (1990)

  34. Peres, Y., Sinclair, A., Sousi, P., Stauffer, A.: Mobile geometric graphs: detection, coverage and percolation. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 412–428. SIAM, Philadelphia, PA (2011)

  35. Peres, Y., Sousi, P.: An isoperimetric inequality for the Wiener sausage. Geom. Funct. Anal. 22(4), 1000–1014 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  36. Povel, T.: Confinement of Brownian motion among Poissonian obstacles in \(\mathbb{R}^d, d\ge 3\). Probab. Theory Relat. Fields 114, 177–205 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  37. Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  38. Stolz, G.: Non-monotonic random Schrödinger operators: the Anderson model. J. Math. Anal. Appl. 248(1), 173–183 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  39. Sznitman, A.-L.: Brownian Motion, Obstacles and Random Media. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  40. van den Berg, J., Meester, R., White, D.G.: Dynamic Boolean models. Stoch. Process. Appl. 69, 247–257 (1997)

    Article  MATH  Google Scholar 

  41. Yakimiv, A.L.: Probabilistic Applications of Tauberian Theorems. Translated from the Russian original by Andrei V. Kolchin. Modern Probability and Statistics. VSP, Leiden (2005)

Download references

Acknowledgments

The authors would like to thank the anonymous referee for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xiong.

Additional information

Xia Chen received support in part from the Simons Foundation #244767.

Jie Xiong received support in part from NSF grant DMS-0906907 and FDCT 076/2012/A3.

Appendix

Appendix

In this section, we prove some technical results used in the main body of the paper.

1.1 Hardy Inequality

Hardy’s inequality plays an important role in this paper. Searching in literature, we have found large amount of versions of Hardy’s inequality (i.e., [29, 33]) but the form needed in this paper. For reader’s convenience, we state Hardy’s inequality for \(d=3\) in the following lemma and provide a short proof.

Lemma 6.1

For any \(f\in W^{1,2}(\mathbb {R}^3)\),

$$\begin{aligned} \int \limits _{\mathbb {R}^3}{f^2(x)\over \vert x\vert ^2}\hbox {d}x\le 4\int \limits _{\mathbb {R}^3}\vert \nabla f(x)\vert ^2 \hbox {d}x. \end{aligned}$$
(6.1)

Further, the number 4 is the best constant in the sense that for any \(\epsilon >0\) one can find a function \(f_\epsilon \in W^{1,2}(\mathbb {R}^3)\) with compact support such that

$$\begin{aligned} \int \limits _{\mathbb {R}^3}{f_\epsilon ^2(x)\over \vert x\vert ^2}\hbox {d}x> (4-\epsilon ) \int \limits _{\mathbb {R}^3}\vert \nabla f_\epsilon (x)\vert ^2 \hbox {d}x. \end{aligned}$$
(6.2)

Proof

Write \(x=(x_1,x_2,x_3)\). Using integration by parts

$$\begin{aligned} \int \limits _{\mathbb {R}^3}{f^2(x)\over \vert x\vert ^2}\hbox {d}x =\int \limits _{\mathbb {R}^3}x_j\Big [{2x_i\over \vert x\vert ^4}f^2(x)-{2\over \vert x\vert ^2} f(x){\partial f\over \partial x_j}\Big ]\hbox {d}x\quad j=1,2,3. \end{aligned}$$

Summing over \(j\) on the both sides

$$\begin{aligned} 3\int \limits _{\mathbb {R}^3}{f^2(x)\over \vert x\vert ^2}\hbox {d}x= 2\int \limits _{\mathbb {R}^3}\Big [{f^2(x)\over \vert x\vert ^2}- {\nabla f\cdot x\over \vert x\vert ^2}f(x)\Big ]\hbox {d}x. \end{aligned}$$

Thus,

$$\begin{aligned} \int \limits _{\mathbb {R}^3}{f^2(x)\over \vert x\vert ^2}\hbox {d}x =-2\int \limits _{\mathbb {R}^3}{\nabla f\cdot x\over \vert x\vert }{f(x)\over \vert x\vert }\hbox {d}x \le 2\bigg (\int \limits _{\mathbb {R}^3}{\vert \nabla f\cdot x\vert ^2\over \vert x\vert ^2} \hbox {d}x\bigg )^{1/2}\bigg (\int \limits _{\mathbb {R}^3}{f^2(x)\over \vert x\vert ^2}\hbox {d}x\bigg )^{1/2}. \end{aligned}$$

Therefore,

$$\begin{aligned} \int \limits _{\mathbb {R}^3}{f^2(x)\over \vert x\vert ^2}\hbox {d}x\le 4 \int \limits _{\mathbb {R}^3}{\vert \nabla f\cdot x\vert ^2\over \vert x\vert ^2}\hbox {d}x \le 4\int \limits _{\mathbb {R}^3}\vert \nabla f(x)\vert ^2\hbox {d}x. \end{aligned}$$

To establish (6.2), for each large \(M>0\), we define \(g_M\in W^{1,2}(\mathbb {R}^3)\) as following:

$$\begin{aligned} g_M(x)=\left\{ \begin{array}{ll} M^{1/2} &{} 0\le \vert x\vert \le M^{-1}\\ \\ \vert x\vert ^{-1/2} &{} M^{-1}<\vert x\vert \le M\\ \\ \displaystyle {2M-\vert x\vert \over M^{3/2}} &{} M<\vert x\vert \le 2M\\ \\ 0 &{} \vert x\vert > 2M.\end{array}\right. \end{aligned}$$

It is straightforward to exam that \(g_M\) is locally supported and

$$\begin{aligned} \int \limits _{\mathbb {R}^3}{g_M^2(x)\over \vert x\vert ^2}\hbox {d}x= \bigg \{4-28\Big ({7\over 3}+{1\over 2}\log M\Big )^{-1}\bigg \} \int \limits _{\mathbb {R}^3}\vert \nabla g_M(x)\vert ^2\hbox {d}x. \end{aligned}$$

For each \(\epsilon >0\), take \(M>0\) sufficiently large so

$$\begin{aligned} 28\Big ({7\over 3}+{1\over 2}\log M\Big )^{-1}<\epsilon \end{aligned}$$

and let \(f_\epsilon (x)=g_M(x)\). \(\square \)

What has been used in this paper is the following version of Hardy’s inequality.

Lemma 6.2

For any \(\theta >0\),

$$\begin{aligned} \sup _{g\in \mathcal{F}_3}\bigg \{\theta \int \limits _{\mathbb {R}^3}{g^2(x)\over \vert x\vert ^2}\hbox {d}x -{1\over 2}\int \limits _{\mathbb {R}^3}\vert \nabla g(x)\vert ^2\hbox {d}x\bigg \} = \left\{ \begin{array}{ll} 0 &{} \text {if } \theta \le 1/8,\\ \infty &{} \text {if } \theta > 1/8. \end{array}\right. \end{aligned}$$
(6.3)

Proof

By Hardy’s inequality, the left-hand side of (6.3) is non-positive when \(\theta <1/8\). On the other hand, it is no less than

$$\begin{aligned} -{1\over 2}\inf _{g\in \mathcal{F}_3}\int \limits _{\mathbb {R}^3}\vert \nabla g(x)\vert ^2\hbox {d}x \end{aligned}$$

which is equal to zero. Thus, for \(\theta \le 1/8\),

$$\begin{aligned} \sup _{g\in \mathcal{F}_3}\bigg \{\theta \int \limits _{\mathbb {R}^3}{g^2(x)\over \vert x\vert ^2}\hbox {d}x -{1\over 2}\int \limits _{\mathbb {R}^3}\vert \nabla g(x)\vert ^2\hbox {d}x\bigg \}=0. \end{aligned}$$

Assume \(\theta > 1/8\). By the optimality of Hardy’s inequality described in (6.2),

$$\begin{aligned} H(\theta )\equiv \sup _{g\in \mathcal{F}_3} \bigg \{\theta \int \limits _{\mathbb {R}^3}{g^2(x)\over \vert x\vert ^2}\hbox {d}x -{1\over 2}\int \limits _{\mathbb {R}^3}\vert \nabla g(x)\vert ^2\hbox {d}x\bigg \}>0. \end{aligned}$$

Given \(a>0\), the substitution \(g(x)=a^{3/2}f(ax)\) leads to \(H(\theta )=a^2H(\theta )\). So \(M(\theta )=\infty \). \(\square \)

1.2 An Auxiliary Limit Result

Let

$$\begin{aligned} Q(b)=\int \limits _{\{\vert x\vert \ge b\}} {1\over \vert x\vert ^p}\mathbb {E}{1\{\vert x+U\vert \ge b\}\over \vert x+U\vert ^p}\hbox {d}x \quad (b\ge 0) \end{aligned}$$
(6.4)

with \(U\sim N(0, I_d)\). In this subsection, we give the limiting behaviors of \(Q(b)\) as \(b\rightarrow 0+\) and as \(b\rightarrow \infty \), respectively.

Lemma 6.3

$$\begin{aligned} \lim _{b\rightarrow 0^+}Q(b)&=\mathbb {E}\int \limits _{\mathbb {R}^d}{1\over \vert x\vert ^p}{1\over \vert x+U\vert ^p}\hbox {d}x=C(d,p)\mathbb {E}\vert U\vert ^{-(2p-d)}\nonumber \\&=C(d,p)2^{d-p-1}\hbox {d}\omega _d(2\pi )^{-d/2}\Gamma (d-p), \end{aligned}$$
(6.5)

where

$$\begin{aligned} C(d,p)=\pi ^{d/2}{\displaystyle \Gamma ^2\Big ({d-p\over 2}\Big ) \Gamma \Big ({2p-d\over 2}\Big )\over \displaystyle \Gamma ^2\Big ({p\over 2}\Big )\Gamma (d-p)}. \end{aligned}$$
(6.6)

Proof

The first equality follows from the monotone convergence theorem. The second follows from the identity (see p. 118, [15] or p. 118, (8), [37])

$$\begin{aligned} \int \limits _{\mathbb {R}^d}{1\over \vert x-y\vert ^p}{1\over \vert x-z\vert ^p}\hbox {d}x =C(d,p){1\over \vert y-z\vert ^{2p-d}}\quad y,z\in \mathbb {R}^d. \end{aligned}$$
(6.7)

\(\square \)

Lemma 6.4

Under \(d/2<p<d\), we have

$$\begin{aligned} \lim _{b\rightarrow \infty }b^{2p-d}Q(b)={\hbox {d}\omega _d\over 2p-d}. \end{aligned}$$
(6.8)

Proof

By variable substitution, we have,

$$\begin{aligned}&\int \limits _{\{\vert x\vert \ge b\}} {1\over \vert x\vert ^p}{1\{\vert x+ U\vert \ge b\}\over \vert x+U\vert ^p}\hbox {d}x\\&\quad =\vert U\vert ^{-(2p-d)}\int \limits _{\{\vert x\vert \ge b\vert U\vert ^{-1}\}} {1\over \vert x\vert ^p}{1\{\vert x+\vert U\vert ^{-1}U\vert \ge b\vert U\vert ^{-1}\}\over \vert x+\vert U\vert ^{-1}U\vert ^p}\hbox {d}x\\&\quad =\vert U\vert ^{-(2p-d)}H\big (b\vert U\vert ^{-1}\big ), \end{aligned}$$

where

$$\begin{aligned} H(b)=\int \limits _{\{\vert x\vert \ge b\}}{1\over \vert x\vert ^p} {1\{\vert x+x_0\vert \ge b\}\over \vert x+x_0\vert ^p}\hbox {d}x, \end{aligned}$$

\(x_0\) is a fixed point with \(\vert x_0\vert =1\), and the last step follows from the fact that \(H(b)\) does not depend on the location of \(x_0\) on the unit sphere. Thus,

$$\begin{aligned}&Q(b)=\mathbb {E}\vert U\vert ^{-(2p-d)}H\big (b\vert U\vert ^{-1}\big )\\&\quad =\int \limits _{\mathbb {R}^d}{\hbox {d}x\over \vert x\vert ^p\vert x+x_0\vert ^p} \bigg [\int \limits _{\mathbb {R}^d}{1\{\vert y\vert \ge b\vert x\vert ^{-1}\} 1\{\vert y\vert \ge b\vert x+x_0\vert ^{-1}\}\over \vert y\vert ^{2p-d}} p_1(y) \hbox {d}y\bigg ]\hbox {d}x\\&\quad \sim \int \limits _{\{\vert x\vert \ge C\}}{\hbox {d}x\over \vert x\vert ^p\vert x+x_0\vert ^p} \bigg [\int \limits _{\mathbb {R}^d}{1\{\vert y\vert \ge b\vert x\vert ^{-1}\} 1\{\vert y\vert \ge b\vert x+x_0\vert ^{-1}\}\over \vert y\vert ^{2p-d}} p_1(y)\hbox {d}y\bigg ]\hbox {d}x, \end{aligned}$$

where \(p_1(x)\) is the density of the \(d\)-dimensional standard normal distribution, \(C>0\) is a large but fixed constant. By the fact that \(C\gg 1=\vert x_0\vert \), for \(b\rightarrow \infty \), we have

$$\begin{aligned}&Q(b)\sim q(C)\int \limits _{\{\vert x\vert \ge C\}} {\hbox {d}x\over \vert x\vert ^{2p}} \bigg [\int \limits _{\{\vert y\vert \ge b\vert x\vert ^{-1}\}} {1\over \vert y\vert ^{2p-d}}p_1(y)\hbox {d}y\bigg ]\\&\quad =q(C)\int \limits _{\mathbb {R}^d}{1\over \vert y\vert ^{2p-d}}p_1(y)\bigg [ \int \limits _{\{\vert x\vert \ge \max \{C, b\vert y\vert ^{-1}\}\}}{\hbox {d}x\over \vert x\vert ^{2p}}\bigg ] \hbox {d}y\\&\quad =q(C){\hbox {d}\omega _d\over 2p-d}\int \limits _{\mathbb {R}^d}{1\over \vert y\vert ^{2p-d}}p_1(y) \min \bigg \{{1\over C^{2p-d}}, \Big ({\vert y\vert \over b}\Big )^{2p-d}\bigg \}\hbox {d}y\\&\quad =q(C){\hbox {d}\omega _d\over 2p-d}{1\over C^{2p-d}}\int \limits _{\{\vert y\vert \ge C^{-1}b\}} {1\over \vert y\vert ^{2p-d}}p_1(y)\hbox {d}y\\&\quad +\,q(C){\hbox {d}\omega _d\over 2p-d}{1\over b^{2p-d}} \int \limits _{\{\vert y\vert \le C^{-1}b\}}p_1(y)\hbox {d}y, \end{aligned}$$

where \(q(C)\rightarrow 1\) as \(C\rightarrow \infty \). The first term on the right-hand side is obviously negligible. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Xiong, J. Annealed Asymptotics for Brownian Motion of Renormalized Potential in Mobile Random Medium. J Theor Probab 28, 1601–1650 (2015). https://doi.org/10.1007/s10959-014-0558-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-014-0558-8

Keywords

Mathematics Subject Classification (2010)

Navigation