Skip to main content
Log in

Singularity Analysis for Heavy-Tailed Random Variables

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We propose a novel complex-analytic method for sums of i.i.d. random variables that are heavy-tailed and integer-valued. The method combines singularity analysis, Lindelöf integrals, and bivariate saddle points. As an application, we prove three theorems on precise large and moderate deviations which provide a local variant of a result by Nagaev (Transactions of the sixth Prague conference on information theory, statistical decision functions, random processes, Academia, Prague, 1973). The theorems generalize five theorems by Nagaev (Litov Mat Sb 8:553–579, 1968) on stretched exponential laws \(p(k) = c\exp ( -k^\alpha )\) and apply to logarithmic hazard functions \(c\exp ( - (\log k)^\beta )\), \(\beta >2\); they cover the big-jump domain as well as the small steps domain. The analytic proof is complemented by clear probabilistic heuristics. Critical sequences are determined with a non-convex variational problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For \(\beta \in (1,2]\), \(x q'(x)= \beta (\log x)^{\beta -1} \rightarrow \infty \) but the stronger condition \(x q'(x)/\log x\rightarrow \infty \) from Assumption 2.1(ii) fails. We suspect that this restriction is technical and could be lifted with more detailed estimates, but a proof or disproof is beyond this article’s scope.

References

  1. Arratia, R., Barbour, A.D., Tavaré, S.: Logarithmic Combinatorial Structures, EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich (2003)

    MATH  Google Scholar 

  2. Armendáriz, I., Grosskinsky, S., Loulakis, M.: Zero-range condensation at criticality. Stoch. Proc. Appl. 123, 3466–3496 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Denisov, D., Dieker, A.B., Shneer, V.: Large deviations for random walks under subexponentiality: the big-jump domain. Ann. Probab. 36, 1946–1991 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Doetsch, G.: Theorie und Anwendung der Laplace-Transformationen. Springer, Berlin (1937)

    Book  MATH  Google Scholar 

  5. Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events. For Insurance and Finance, Applications of Mathematics (New York), vol. 33. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  6. Ercolani, N.M., Jansen, S., Ueltschi, D.: Random partitions in statistical mechanics. Electron. J. Probab. 19(82), 1–37 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Feller, W.: An Introduction to Probability Theory and its Applications, vol. 2. Wiley, New York (1966)

    MATH  Google Scholar 

  8. Flajolet, P., Gerhold, S., Salvy, B.: Lindelöf representations and (non-)holonomic sequences. Electron. J. Comb. 17, R3 (2010)

    MATH  Google Scholar 

  9. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  10. Ibragimov, I.A., Linnik, Y.U.: Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff Publishing, Groningen (1971)

    MATH  Google Scholar 

  11. Lindelöf, E.: Le calcul des résidus et ses applications à la théorie des fonctions, Collection de monographies sur la théorie des fonctions, publiée sous la direction de M. Émile Borel. Gauthier-Villars, Paris, 1905. Reprinted by Gabay, Paris (1989)

  12. Nagaev, A.V.: Local limit theorems with regard to large deviations when Cramér’s condition is not satisfied. Litov. Mat. Sb. 8, 553–579 (1968). Selected Transl. in Math. Stat. Probab. 11, 249–278 (1973)

  13. Nagaev, A.V.: Letter to the editor: a remark concerning the article “Local limit theorems with regard to large deviations”. Litov. Mat. Sb. 10, 206 (1970). Selected Transl. in Math. Stat. Probab. 11, 279 (1973)

  14. Nagaev, S.V.: Large deviations for sums of random variables. In: Transactions of the Sixth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes (Tech. Univ., Prague, 1971), pp. 657–674. Academia, Prague (1973)

  15. Nagaev, S.V.: Large deviations of sums of independent random variables. Ann. Probab. 7, 745–789 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pollard, H.: The representation of \(\text{ e }^{-x^\lambda }\) as a Laplace integral. Bull. Am. Math. Soc. 52, 908–910 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rozovskiĭ, L.V.: Probabilities of large deviations on the whole axis. Teor. Veroyatnost. i Primenen. 38, 79–109 (1993). Transl. in Theory Probab. Appl. 38, 53–79 (1993)

Download references

Acknowledgements

The authors wish to thank the Laboratoire Jean Dieudonné of the University of Nice and the Institut Henri Poincaré (during the program of the spring 2013 organized by M. Esteban and M. Lewin) for their kind hospitality and for the opportunity to discuss this project. S. J. thanks V. Wachtel for pointing out Nagaev’s article [14].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Jansen.

Additional information

Supported by NSF Grant DMS-1212167.

Appendices

Appendix A. Proofs of Lemmas 2.14 and 2.15

Proof of Lemma 2.14

The proof of Assumption 2.1 is straightforward and left to the reader. The function \(q(\zeta ) = \zeta ^\alpha \) is analytic in \(\mathrm {Re}\,\zeta >0\) and \(p(\zeta )= \exp (- \zeta ^\alpha )\) satisfies, for all \(k \in \mathbb {N}\),

$$\begin{aligned} |\zeta ^k p(\zeta )| = |\zeta |^k \,\mathrm{e}^{- |\zeta |^\alpha \cos (\alpha \mathrm{arg}(\zeta ))}\, \le |\zeta |^k \,\mathrm{e}^{- |\zeta |^\alpha \cos (\alpha \pi /2)}\,. \end{aligned}$$
(A.1)

Since \(\alpha \in (0,1)\), we have \(\cos \frac{\alpha \pi }{2} >0\) and Eq. (A.1) shows that \(|\zeta ^k p(\zeta )|\) is integrable along \(\mathrm {Re}\,\zeta =1/2\) and that \(p(\zeta )\) grows slower than any exponential \(\exp (\varepsilon |\zeta |)\). This proves Assumption 2.2.

The equation \(q''(x_n^*) = -1/(n\sigma ^2)\) can be solved explicitly. \(N_n^*\) and \(N_n^{**}\) are best determined with the scaling relation (2.24). They have already been determined in [12], we omit the proof. For the insensitivity scale, we notice that

$$\begin{aligned} n \sigma ^2 q'(N_n)^2 = n \sigma ^2 \alpha ^2 N_n^{2 \alpha -2} \end{aligned}$$
(A.2)

which goes to zero if and only if \(N_n \gg n^{-1/(2-2\alpha )}\). \(\square \)

Proof of Lemma 2.15

The function \(q(x) = - \log c +(\log x)^\beta \) is clearly smooth on \((1,\infty )\). Then \(q'(x) = \beta (\log x)^{\beta -1}/ x\) and as \(x\rightarrow \infty \),

$$\begin{aligned} q''(x) \sim - \frac{\beta (\log x)^{\beta -1}}{x^2},\quad q'''(x) \sim \frac{2 \beta (\log x)^{\beta -1}}{x^3}. \end{aligned}$$
(A.3)

Assumption 2.1 is easily checked. For Assumption 2.2 we note \(q(\zeta ) = c + (\log \zeta )^\beta \) is analytic in \(\mathrm {Re}\,\zeta >1\). Fix \(b>1\) and write \(\zeta = r \exp ( \mathrm{i}\theta )\). As \(|\zeta | \rightarrow \infty \) along \(\mathrm {Re}\,\zeta = b\) i.e. \(\zeta = b + \mathrm{i}y\), the argument \(\theta \) goes to \(\pm \pi /2\) and we have

$$\begin{aligned} \mathrm {Re}\,(\log |\zeta | + \mathrm{i}\theta )^\beta&= \mathrm {Re}\,\Bigl ( \log |y| + \frac{1}{2}\log \Bigl (1+ \frac{b^2}{y^2}\Bigr ) + \mathrm{i}\theta \Bigr )^\beta \end{aligned}$$
(A.4)
$$\begin{aligned}&= (\log |y|)^\beta + o(1), \end{aligned}$$
(A.5)

conditions(i) and (ii) in Assumption 2.2 are easily checked. Assumption 2.3(iii) follows from a computation similar to (A.3). Set \(y_0 = \sqrt{r^2 - b^2}\). We have for \(\zeta = b + \mathrm{i}y\), \(y\ge y_r\), uniformly in r,

$$\begin{aligned} \mathrm {Re}\,q(\zeta ) - \mathrm {Re}\,q(z_r)&= (\log y)^\beta - (\log y_0)^\beta + o(1)\nonumber \\&\ge \beta (\log y_0)^{\beta -1} \log \frac{y}{y_0} + o(1) \end{aligned}$$
(A.6)

hence

$$\begin{aligned} \int _{y_r}^\infty \,\mathrm{e}^{- \mathrm {Re}\,q(b + \mathrm{i}y)}\, \mathrm {d}y&\le \,\mathrm{e}^{-\mathrm {Re}\,q(b+\mathrm{i}y_0) + o(1)}\, \int _1^\infty \,\mathrm{e}^{- (\log y_0)^{\beta -1} \log s}\, y_0 \mathrm {d}s \nonumber \\&\sim \,\mathrm{e}^{-\mathrm {Re}\,q(b+\mathrm{i}y_0)}\, \frac{y_0}{(\log y_0)^{\beta -1}}= \,\mathrm{e}^{-\mathrm {Re}\,q(b+\mathrm{i}y_0) + O(\log r)}\,, \end{aligned}$$
(A.7)

which proves Assumption2.3(i). Next let \(\zeta \in \mathbb {C}\) with \(\mathrm {Re}\,\zeta >1\), write \(\zeta = r \exp (\mathrm{i}\theta )\), then

$$\begin{aligned} \zeta q'(\zeta ) = \beta (\log \zeta )^{\beta -1} = \beta (\log r + \mathrm{i}\theta )^{\beta -1} = q'(r) \Bigl (1 + \frac{\mathrm{i}\theta }{\log r }\Bigr )^{\beta -1} \end{aligned}$$
(A.8)

and for large r and \(\theta \in (0,\pi /2)\),

$$\begin{aligned} \frac{\mathrm {Im}\,\zeta q'(\zeta )}{\mathrm {Im}\,\zeta q'(r)} \sim \frac{\beta -1}{r \log r} \frac{\theta }{\sin \theta } \rightarrow 0 \end{aligned}$$
(A.9)

and so Assumption 2.3(ii) holds.

We now turn to the asymptotic behavior of the sequences \(x_n^*\), \(N_n^*\) and \(N_n^{**}\). Since \(q''(x_n) = -\frac{1}{n\sigma ^2}\), it is clear that \(x_n \rightarrow \infty \) as \(n \rightarrow \infty \). The equation is

$$\begin{aligned} \frac{1}{n\sigma ^2} \sim \frac{\beta (\log x_n^*)^{\beta -1}}{(x_n^*)^2}. \end{aligned}$$
(A.10)

Consequently,

$$\begin{aligned} (x_n^*)^2\sim & {} \beta n \sigma ^2 \bigl ( \tfrac{1}{2} \log (x_n^*)^2 \bigr )^{\beta -1}\nonumber \\\sim & {} \beta n \sigma ^2 \left( \tfrac{1}{2} \log n\right) ^{\beta -1} \left( 1 + \frac{\log \beta \sigma ^2 + (\beta -1) \log \log x_n^*}{\log n} \right) ^{\beta -1}. \end{aligned}$$
(A.11)

The last bracket is asymptotically equal to 1 and we get the expression for \(x_n^*\). Next, we have from (2.10)

$$\begin{aligned} N_n^* = x_n^* + n \sigma ^2 \frac{\beta (\log x_n^*)^{\beta -1}}{x_n^*} \sim 2 x_n^*. \end{aligned}$$
(A.12)

The last asymptotics follows from (A.10).

We now turn to \(N_n^{**}\). It is asymptotically given by the solution of the equations

$$\begin{aligned} \frac{N_n^2}{2n\sigma ^2}&= q(x_n) + \frac{(N_n-x_n)^2}{2n\sigma ^2}, \end{aligned}$$
(A.13)
$$\begin{aligned} q'(x_n)&= \frac{N_n-x_n}{n\sigma ^2}. \end{aligned}$$
(A.14)

Equation (A.14) is equivalent to

$$\begin{aligned} x_n^2 - N_n x_n + \beta n \sigma ^2 (\log x_n)^{\beta -1} = 0. \end{aligned}$$
(A.15)

The relevant solution is

$$\begin{aligned} x_n = \tfrac{1}{2} \Bigl ( N_n + \sqrt{ N_n^2 - 4 \beta n \sigma ^2 (\log x_n)^{\beta -1}} \Bigr ) = N_n \Bigl ( 1 - \frac{\beta n \sigma ^2}{N_n^2} (\log x_n)^{\beta -1} (1 + o(1)) \Bigr ). \end{aligned}$$
(A.16)

It follows that \(N_n - x_n \sim \frac{\beta n \sigma ^2}{N_n} (\log x_n)^{\beta -1}\). We insert this in (A.13); using \(\log x_n \sim \log N_n\), we get

$$\begin{aligned} \frac{N_n^4}{2n\sigma ^2} - N_n^2 (\log N_n)^\beta - \tfrac{1}{2} \beta ^2 n \sigma ^2 (\log N_n)^{2\beta -2} = o(1). \end{aligned}$$
(A.17)

The relevant solution is

$$\begin{aligned} \begin{aligned} N_n^2&\sim n \sigma ^2 \Bigl [ (\log N_n)^\beta + \sqrt{(\log N_n)^{2\beta } + \beta ^2 (\log N_n)^{2\beta -2}} \Bigr ] \\&\sim 2n \sigma ^2 (\tfrac{1}{2} \log N_n^2)^\beta \sim 2^{1-\beta } n \sigma ^2 \bigl ( \log n + \log 2\sigma ^2 + \beta \log \log N_n \bigr )^\beta . \end{aligned} \end{aligned}$$
(A.18)

Only the term \(\log n\) matters in the last bracket and the result follows.

The last part of the lemma on insensitivity sequence is shown in [3, Section 8.3], the proof is therefore omitted. \(\square \)

Appendix B. Bivariate Hessian

As explained in Step 4 of the proof outline, the Hessian at \((t_n,\zeta _n)\) has determinant \(-1 + o(1)\) and is a saddle point of \(\Phi _n(t,\zeta )\), considered as a function of two real variables \(t,\zeta >0\). In order to get rid of off-diagonal elements in the Hessian and to give all eigenvalues the same sign, we take complex \(\zeta \) and reparametrize, as sketched in Step 5.

Lemma B.1

Let \(\zeta (t)\) be the unique solution of \((\partial _\zeta \Phi _n)(t,\zeta ) =t - q'(\zeta ) = 0\). Set

$$\begin{aligned} F_n: (0,\infty ) \times \mathbb {R}\rightarrow \mathbb {C},\quad F_n(t,s) = \Phi _n (t, \zeta (t) + \mathrm{i}s). \end{aligned}$$

Then \((\nabla F_n)(t_n,0) =0\),

$$\begin{aligned} \mathrm{Hess}\, F_n(t,0) =\begin{pmatrix} \beta (t) &{} 0 \\ 0 &{} q''(\zeta (t)) \end{pmatrix}, \quad \beta (t) = - \frac{\det (\mathrm{Hess}\, \Phi _n)(t,\zeta (t))}{q''(\zeta (t))}. \end{aligned}$$

Note that \(\zeta _n = \zeta (t_n)\), so as \(n\rightarrow \infty \)

$$\begin{aligned} \det \mathrm{Hess}\, F_n(t_n,0) = \beta (t_n) q''(\zeta _n)=- \det (\mathrm{Hess}\, \Phi _n)(t_n,\zeta _n) = 1+o(1). \end{aligned}$$
(B.1)

Proof

We have

$$\begin{aligned} \partial _t F_n(t,s)&= (\partial _t \Phi _n)(t,\zeta (t) + \mathrm{i}s) + (\partial _\zeta \Phi _n)(t,\zeta (t) + \mathrm{i}s) \zeta '(t),\nonumber \\ \partial _s F_n(t,s)&= \mathrm{i}\partial _\zeta \Phi _n(t,\zeta (t) + \mathrm{i}s). \end{aligned}$$
(B.2)

At \(t=t_n\), \(s=0\), we have \(\zeta (t) = \zeta _n\) and \((\nabla F_n)(t_n,0) = \nabla \Phi _n(t_n,\zeta _n) =0\). For the Hessian, we compute

$$\begin{aligned} \partial _s^2 F_n(t,0)&= - \partial _\zeta ^2 \Phi _n(t, \zeta (t))= q''(\zeta (t)), \nonumber \\ \partial _t \partial _s F_n(t,0)&= \mathrm{i} (\partial _t \partial _\zeta \Phi _n)(t,\zeta (t) ) + \mathrm{i} \partial _\zeta ^2 \Phi _n(t,\zeta (t)) \nonumber \\ \partial _t^2 F_n(t,0)&= \frac{\mathrm {d}^2}{\mathrm {d}t^2} \Phi _n(t,\zeta (t)) = \beta (t). \end{aligned}$$
(B.3)

By definition of \(\zeta (t)\),

$$\begin{aligned} 0= \frac{\mathrm {d}}{\mathrm {d}t} \partial _\zeta \Phi _n (t,\zeta (t)) = (\partial _t\partial _\zeta \Phi _n) (t,\zeta (t)) + \partial _\zeta ^2 \Phi _n(t,\zeta (t)) \zeta '(t). \end{aligned}$$
(B.4)

It follows that \(\partial _t \partial _s F_n(t,0) =0\), and

$$\begin{aligned} \beta (t)&= \frac{\mathrm {d}^2}{\mathrm {d}t^2} \Phi _n(t,\zeta (t)) = \frac{\mathrm {d}}{\mathrm {d}t} (\partial _t \Phi _n)(t,\zeta (t)) \nonumber \\&= (\partial _t^2 \Phi _n)(t,\zeta (t)) + (\partial _t \partial _\zeta \Phi _n) (t,\zeta (t)) \zeta '(t). \end{aligned}$$
(B.5)

We solve for \(\zeta '(t)\) in Eq. (B.4), insert into Eq. (B.5), and obtain the formula for \(\beta (t)\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ercolani, N.M., Jansen, S. & Ueltschi, D. Singularity Analysis for Heavy-Tailed Random Variables. J Theor Probab 32, 1–46 (2019). https://doi.org/10.1007/s10959-018-0832-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-018-0832-2

Keywords

Mathematics Subject Classification (2010)

Navigation