Skip to main content
Log in

Mechanical, thermal properties and isothermal crystallization kinetics of biodegradable poly(butylene succinate-co-terephthalate) (PBST) fibers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Biodegradable copolymer poly(butylene succinate-co-terephthalate) (PBST), with 70 mol% butylene terephthalate (BT), was melt-spun into fibers with take-up velocity of 2 km/min. The mechanical and thermal properties of the as-spun fibers were investigated through tensile test, DSC and TGA. Compared to poly(butylene terephthalate) (PBT) fibers, PBST fibers exhibited lower initial tensile modulus and higher tensile elongation at break which indicated their better flexibility. DSC results showed high melting temperature (ca.180.7 °C) of PBST fibers helpful to the textile processing compared to other biodegradable polyesters. Furthermore, isothermal crystallization behaviors of PBST fibers at low and high supercoolings were investigated by DSC and DLI, respectively. The measurement of crystallization kinetics at low supercoolings indicated that Avrami exponent n for PBST fibers was at a range of 2.9 to 3.3, corresponding to the heterogeneous nucleation and a 3-dimensional spherulitic growth. Similar results were given for isothermal crystallization behavior at high supercoolings investigated by DLI technique. Additionally, the equilibrium melting temperature of PBST fibers was obtained for 206.5 °C by Hoffman-Weeks method. Further investigation through DLI measurement provided the temperature at maximum crystallization rate for PBST fibers located at about 90 °C, which was very useful to polymer processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Doi Y (1990) Microbial polyesters. VCH, New York

    Google Scholar 

  2. Gan Z-H, Abe H, Kurokawa H, Doi Y (2001) Biomacromolecules 2:2605

    Google Scholar 

  3. He Y, Zhu B, Kai W-H, Inoue Y (2004) Macromolecules 37:3337

    Article  CAS  Google Scholar 

  4. Yang J, Tian W-S, Li Q-B, Li Y, Cao A-M (2004) Biomacromolecules 5:2258

    Article  CAS  Google Scholar 

  5. Shibata M, Inoue Y, Miyoshi Y (2006) Polymer 47:3557

    Article  CAS  Google Scholar 

  6. Rantze E, Kleeberg I, Witt U, Müller R-J, Deckwer W-D (1998) Maromol Symp 130:319

    CAS  Google Scholar 

  7. Witt U, Müller R-J, Deckwer W-D (1996) Maromol Chem Phys 197:1525

    Article  CAS  Google Scholar 

  8. Witt U, Müller R-J, Deckwer W-D (1997) J Environ Polym Degrad 5:81

    CAS  Google Scholar 

  9. Uwe W, Rolf-Joachim M, Wolf-Dieter D (1995) J Environ Polym Degrad 3:215

    Article  Google Scholar 

  10. Li F-X, Xu X-J, Yu J-Y, Cao A-M (2007) Polym Degrad Stab 92:1053

    Article  CAS  Google Scholar 

  11. Shi X-Q, Ito H, Kikutani T (2005) Polymer 46:11442

    Article  CAS  Google Scholar 

  12. Shi X-Q, Ito H, Kikutani T (2006) Polymer 47:611

    Article  CAS  Google Scholar 

  13. Li F-X, Xu X-J, Hao Q-H, Li Q-B, Yu J-Y, Cao A-M (2006) J polym Sci Part B: Polym Phys 44:1635

    Article  CAS  Google Scholar 

  14. Barrall E-M, Gallegos E-J (1967) J Polym Sci Part A: Polym Chem 25:113

    Google Scholar 

  15. Wang C-B, Cooper S-L (1983) Macromolecules 16:775

    Article  CAS  Google Scholar 

  16. Kimura I, Ishihara H, Ono H, Yoshihara N, Nomura S, Kawai H (1974) Macromolecules 7:355

    Article  CAS  Google Scholar 

  17. Li X-G, Huang M-R, Guan G-H, Sun T (1995) Angew Makromol Chem 227:69

    Article  CAS  Google Scholar 

  18. Eroglu MS, Hazer B, Baysal BM (1998) J Appl Polym Sci 68:1149

    Article  CAS  Google Scholar 

  19. Avrami M (1939) J Chem Phys 7:1103

    Article  CAS  Google Scholar 

  20. Avrami M (1940) J Chem Phys 8:212

    Article  CAS  Google Scholar 

  21. Lopez L-C, Wilkes G (1989) Polymer 30:882

    Article  CAS  Google Scholar 

  22. Dimitris S-A, George Z-P, George P-K (2004) J Polym Sci Part B: Polym Phys 42:3775

    Article  Google Scholar 

  23. Hoffman J-D, Davis G-T, Lauritzen J-I (1976) Treatise on solid state chemistry, vol. 3: crystalline and noncrystalline solids. Plenum, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faxue Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, F., Luo, S. & Yu, J. Mechanical, thermal properties and isothermal crystallization kinetics of biodegradable poly(butylene succinate-co-terephthalate) (PBST) fibers. J Polym Res 17, 279–287 (2010). https://doi.org/10.1007/s10965-009-9315-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-009-9315-6

Keywords

Navigation