Skip to main content
Log in

The effect of polypropylene-graft-maleic anhydride on the morphology and dynamic mechanical properties of polypropylene/polystyrene blends

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polypropylene (PP) and polystyrene (PS) blends were prepared by melt processing in a haake at 180 °C. PP/PS blends are immiscible and the blend morphologies were characterized by scanning electron microscopy. The viscoelastic properties were characterized using dynamic mechanical analysis (DMA) with reference to blend ratio. The blend morphologies such as matrix droplet and phase inverted morphologies were observed. The storage modulus of the blends increased with increase in PS content and the value was maximum for neat PS. DMA showed changes in the polystyrene glass transition temperatures (T g ) over the entire composition range. There was a sharp increase in the T g of PS with increasing PP content in the blend and a 12 °C elevation in T g was observed. The increase in T g was explained by proposing a new model based on the physical interaction between the blend components. It is assumed that the different effects by the PP phase resulted in the formation of constrained PS chains leading to high T g values. The addition of PP-g-MAH has a positive effect on the morphology, increases the storage modulus, and decreases the T g till 80/20 blends. However, for PP/PS blends with higher concentrations of PS, the PP-g-MAH has little effect or adverse effect on the morphology, and storage modulus, but decreases the T g .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Omonov TS, Harrats C, Groeninckx G, Moldenaers P (2007) Polymer 48:5289–5302

    Article  CAS  Google Scholar 

  2. Xie ZM, Sheng J, Wan ZM (2001) J Macromol Sci Phys 40:251–261

    Article  Google Scholar 

  3. Elias L, Fenouillot F, Majeste JC, Cassagnau P (2007) Polymer 48:6029–6040

    Article  CAS  Google Scholar 

  4. Pluta M, Morawiec J, Kryszewski M, Kowalewski T (1996) J Therm Anal 46:1061–1079

    Article  CAS  Google Scholar 

  5. Zhang Y, Huang Y, Mai K (2005) J Appl Polym Sci 96:2038–2045

    Article  CAS  Google Scholar 

  6. Tiwari RR, Paul DR (2011) Polymer 52:1141–1154

    Article  CAS  Google Scholar 

  7. Brostow W, Grguric TH, Olea-Mejia O, Pietkiewicz D, Rek V (2008) e-Polymers no. 034

  8. Krishnan AK, George TS, Anjana R, Joseph N, George KE (2013) J Appl Polym Sci 127:1409–1415

    Article  CAS  Google Scholar 

  9. Hlavatá D, Horák Z, Hromádková J, Lednický F, Pleska A (1999) J Polym Sci B Polym Phys 37:1647–1656

    Article  Google Scholar 

  10. Smit I, Radonjic G (2000) Polym Eng Sci 40:2144–2160

    Article  CAS  Google Scholar 

  11. Macaubas PHP, Demarquette NR (2001) Polymer 42:2543–2554

    Article  CAS  Google Scholar 

  12. Adewole AA, Denicola A, Gogos CG, Mascia L (2000) Plas Rub Compos 29:70–79

    Article  CAS  Google Scholar 

  13. Ismail HH, Nasir M (2002) Polym Test 21:163–170

    Article  CAS  Google Scholar 

  14. Kim J, Kwak J, Kim D (2003) Polym Adv Technol 14:58–65

    Article  CAS  Google Scholar 

  15. Adewole AA, Denicola A, Gogos CG, Mascia L (2000) Adv Polym Technol 19:180–193

    Article  CAS  Google Scholar 

  16. Hung C, Chuang H, Chang F (2008) J Appl Polym Sci 107:831–839

    Article  CAS  Google Scholar 

  17. Pagnoulle C, Koning C, Leemans L, Jerome R (2000) Macromolecules 33:6275–6283

    Article  CAS  Google Scholar 

  18. Dı’az MF, Barbosa SE, Capiati NJ (2007) Polymer 48:1058–1065

    Article  Google Scholar 

  19. Majumdar B, Paul DR (2000) Reactive compatibilization. In: Paul DR, Bucknall CB (eds) Polymer blends, 1. John Wiley, New York, p 539

    Google Scholar 

  20. Wildes G, Keskkula H, Paul DR (1999) Polymer 40:5609–5621

    Article  CAS  Google Scholar 

  21. Komalan C, George KE, Kumar PAS, Varughese KT, Thomas S (2007) Express Polym Lett 1:641–653

    Article  CAS  Google Scholar 

  22. Omonov TS, Harrats C, Moldenaers P, Groeninckx G (2007) Polymer 48:5917–5927

    Article  CAS  Google Scholar 

  23. Thirtha V, Lehman R, Nosker T (2006) Polymer 47:5392–5401

    Article  CAS  Google Scholar 

  24. Thirtha V, Lehman R, Nosker T (2005) J Polym Eng Sci 45:1187–1193

    Article  CAS  Google Scholar 

  25. Mucha M (1986) Colloid Polym Sci 264:859–865

    Article  CAS  Google Scholar 

  26. Thirtha V, Lehman R, Nosker T (2008) J Appl Polym Sci 107:3987–3992

    Article  CAS  Google Scholar 

  27. Greco R, Hopfenberg HB, Martusgelli E, Ragosta G, Demma G (1978) Polym Eng Sci 18:654–659

    Article  CAS  Google Scholar 

  28. Greco R, Astarita MF, Dong L, Sorrentino A (1994) Adv Polym Technol 13:259–274

    Article  CAS  Google Scholar 

  29. Bates FS, Cohen RE, Argon AS (1983) Macromolecules 16:1108–1114

    Article  CAS  Google Scholar 

  30. Jose S, Thomas S, Biju PK, Karger-Kocsis J (2013) J Polym Res 20:303. doi:10.1007/s10965-013-0303-5

    Article  Google Scholar 

  31. Coran AY, Patel A, (1988) In Handbook of Elastomers - New Developments and Technology. Bhowmick AK, Stephens HL (Eds) Marcel Dekker, New York p. 249

  32. Dickir RA (1973) J Appl Polym Sci 17:45–63

    Article  Google Scholar 

  33. Hara M, Sauer JA (1998) J Macromol Sci Rev Macromol Chem Phys C38:327–362

    Article  CAS  Google Scholar 

  34. Joshi J, Lehman RL, Nosker TJ (2005) J Appl Polym Sci 99:2044–2051

    Article  Google Scholar 

  35. Jiang XL, Sun K, Zhang YX (2007) Express Polym Lett 1:283–291

    Article  CAS  Google Scholar 

  36. Mo JH, Lee JS, Choi IC, Lee WK, Park SB, Min SK, Park CY (2012) Elastomer Compos 47:162–167

    Article  CAS  Google Scholar 

  37. Caporaso L, Ludici N, Oliva L (2005) Macromolecules 38:4894–4900

    Article  CAS  Google Scholar 

  38. Li J, Li H, Wu C, Ke Y, Wang D, Li Q, Zhang L, Hu Y (2009) Eur Polym J 45:2619–2628

    Article  CAS  Google Scholar 

  39. Dorazio L, Guarino R, Mancarella C, Martuscelli E, Cecchin G (1997) J Appl Polym Sci 65:1539–1553

    Article  CAS  Google Scholar 

  40. Schulze U, Fonagy T, Komber H, Pompe G, Pionteck J, Ivan B (2003) Macromolecules 36:4719–4726

    Article  CAS  Google Scholar 

  41. Murayama T (1977) dynamic mechanical analysis of polymer material. Elsevier, New York

    Google Scholar 

  42. Kim DH, Fasulo PD, Rodgers WR, Paul DR (2007) Polymer 48:5308–5323

    Article  CAS  Google Scholar 

  43. Oommen Z, Groninckx G, Thomas S (2000) J Polym Sci B Polym Phys 38:525–536

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J P acknowledges the Department of Science and Technology, Government of India, for financial support under an INSPIRE Faculty Fellowship (IFA-CH-16). N H acknowledges the funding from Australian Academy of Science under the Australia India Early Career Research Fellowship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotishkumar Parameswaranpillai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 101 kb)

ESM 2

(DOC 97 kb)

ESM 3

(DOC 206 kb)

ESM 4

(DOC 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parameswaranpillai, J., Joseph, G., Chellappan, R.V. et al. The effect of polypropylene-graft-maleic anhydride on the morphology and dynamic mechanical properties of polypropylene/polystyrene blends. J Polym Res 22, 2 (2015). https://doi.org/10.1007/s10965-014-0641-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0641-y

Keywords

Navigation