Skip to main content
Log in

Spectroscopic studies on uranyl complexes with tri-n-butyl phosphate (TBP) in ionic liquids

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The complexes formed from uranyl salts and tri-n-butyl phosphate (TBP) in ionic liquids (ILs) were studied by spectroscopic methods. [UO2(TBP)4]2+ is formed from UO2(ClO4)2·xH2O with excess of TBP in ILs. The coordination number of uranyl in [UO2(TBP)4]2+ is determined as 4 by ATR–FTIR study. In [Bmim][NTf2], though TBP cannot replace the NO3 coordinated to uranyl, TBP/[Bmim][NTf2] can extract “nitrate-free” uranyl complex from diluted HNO3 medium and the extracted complex is converted into [UO2(TBP)4]2+ after drying. The formation of [UO2(TBP)4]2+ provides spectroscopic evidence for the cation-exchange mechanism of uranyl extraction by TBP/[Bmim][NTf2] from diluted HNO3 medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084

    Article  CAS  Google Scholar 

  2. Wasserscheid P, Welton T (2002) Ionic liquids in synthesis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  3. Han X, Armstrong DW (2007) Ionic liquids in separations. Acc Chem Res 40:1079–1086

    Article  CAS  Google Scholar 

  4. Hapiot P, Lagrost C (2008) Electrochemical reactivity in room-temperature ionic liquids. Chem Rev 108:2238–2264

    Article  CAS  Google Scholar 

  5. Clare B, Sirwardana A, MacFarlane DR (2010) Synthesis, purification and characterization of ionic liquids. Top Curr Chem 290:1–40

    Article  Google Scholar 

  6. Cocalia VA, Gutowski KE, Rogers RD (2006) The coordination chemistry of actinides in ionic liquids: a review of experiment and simulation. Coord Chem Rev 250:755–764

    Article  CAS  Google Scholar 

  7. Binnemans K (2007) Lanthanides and actinides in ionic liquids. Chem Rev 107:2592–2614

    Article  CAS  Google Scholar 

  8. Mudring AV, Tang S (2010) Ionic liquids for lanthanide and actinide chemistry. Eur J Inorg Chem 18:2569–2581

    Article  Google Scholar 

  9. Billard I, Ouadi A, Gaillard C (2011) Liquid–liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: from discovery to understanding. Anal Bioanal Chem 400:1555–1566

    Article  CAS  Google Scholar 

  10. Sun X, Luo H, Dai S (2011) Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle. Chem Rev 112:2100–2128

    Article  Google Scholar 

  11. Takao K, Bell TJ, Ikeda Y (2013) Actinide chemistry in ionic liquids. Inorg Chem 52:3459–3472

    Article  CAS  Google Scholar 

  12. Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Grätzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178

    Article  CAS  Google Scholar 

  13. Giridhar P, Venkatesan KA, Srinivasan TG, Vasudeva Rao PR (2005) Extraction of uranium(VI) from nitric acid medium by 1.1 M tri-n-butylphosphate in ionic liquid diluent. J Radioanal Nucl Chem 265:31–38

    Article  CAS  Google Scholar 

  14. Giridhar P, Venkatesan KA, Subramaniam S, Srinivasan TG, Vasudeva Rao PR (2008) Extraction of uranium (VI) by 1.1 M tri-n-butylphosphate/ionic liquid and the feasibility of recovery by direct electrodeposition from organic phase. J Alloy Compd 448:104–108

    Article  CAS  Google Scholar 

  15. Dietz ML, Stepinski DC (2008) Anion concentration-dependent partitioning mechanism in the extraction of uranium into room-temperature ionic liquids. Talanta 75:598–603

    Article  CAS  Google Scholar 

  16. Billard I, Ouadi A, Jobin E, Champion J, Gaillard C, Georg S (2011) Understanding the extraction mechanism in ionic liquids: UO2 2+/HNO3/TBP/C4-mimTf2N as a case study. Solvent Extr Ion Exch 29:577–601

    Article  CAS  Google Scholar 

  17. Bell TJ, Ikeda Y (2011) The application of novel hydrophobic ionic liquids to the extraction of uranium(VI) from nitric acid medium and a determination of the uranyl complexes formed. Dalton Trans 40:10125–10130

    Article  CAS  Google Scholar 

  18. Görller-Walrand C, De Jaegere S (1972) Correlation between the vibronic spectra of the uranyl ion and the geometry of its coordination. Spectroc Acta A 28:257–268

    Article  Google Scholar 

  19. Jørgensen CK, Reisfeld R (1982) Uranyl photophysics. Struct Bond 50:121–171

    Article  Google Scholar 

  20. Denning RG (1992) Electronic structure and bonding in actinyl ions. Struct Bond 79:215–276

    Article  CAS  Google Scholar 

  21. Denning RG (2007) Electronic structure and bonding in actinyl ions and their analogs. J Phys Chem A 111:4125–4143

    Article  CAS  Google Scholar 

  22. Dai S, Shin YS, Toth LM, Barnes CE (1997) Comparative UV–Vis studies of uranyl chloride complex in two basic ambient-temperature melt systems: the observation of spectral and thermodynamic variations induced via hydrogen bonding. Inorg Chem 36:4900–4902

    Article  CAS  Google Scholar 

  23. Hopkins TA, Berg JM, Costa DA, Smith WH, Dewey HJ (2001) Spectroscopy of UO2Cl4 2− in basic aluminum chloride -Ethyl-3-methyl- imidazolium Chloride. Inorg Chem 40:1820–1825

    Article  CAS  Google Scholar 

  24. Sornein MO, Cannes C, Le Naour C, Lagarde G, Simoni E, Berthet JC (2006) Uranyl complexation by chloride ions. Formation of a tetrachlorouranium (VI) complex in room temperature ionic liquids [Bmim][Tf2N] and [MeBu3N][Tf2N]. Inorg Chem 45:10419–10421

    Article  CAS  Google Scholar 

  25. Servaes K, Hennig C, Billard I, Gaillard C, Binnemans K, Görller-Walrand C, Van Deun R (2007) Speciation of uranyl nitrato complexes in Acetonitrile and in the ionic liquid 1-butyl-3-methylimidazolium Bis (trifluoromethyl- sulfonyl) imide. Eur J Inorg Chem 32:5120–5126

    Article  Google Scholar 

  26. Billard I, Gaillard C, Hennig C (2007) Dissolution of UO2, UO3 and of some lanthanide oxides in BumimTf2N: effect of acid and water and formation of UO2(NO3) 3 . Dalton Trans 37:4214–4221

    Article  Google Scholar 

  27. Georg S, Billard I, Ouadi A, Gaillard C, Petitjean L, Picquet M, Solov’ev V (2010) Determination of successive complexation constants in an ionic liquid: complexation of UO2 2+ with NO3 in C4-mimTf2N Studied by UV–Vis Spectroscopy. J Phys Chem B 114:4276–4282

    Article  CAS  Google Scholar 

  28. Nockemann P, Servaes K, Van Deun R, Van Hecke K, Van Meervelt L, Binnemans K, Görller-Walrand C (2007) Speciation of uranyl complexes in ionic liquids by optical spectroscopy. Inorg Chem 46:11335–11344

    Article  CAS  Google Scholar 

  29. Allpress JG, Hambly AN (1959) Infra-Red Spectra of Uranyl Compounds. I. Uranyl Nitrates. Aust J Chem. 12:569–574

    Article  CAS  Google Scholar 

  30. Cotton S (1991) Lanthanides and actinides. Oxford University Press, Oxford

    Book  Google Scholar 

  31. Stuart B (2004) Infrared spectroscopy. John Wiley & Sons, Chichester

    Google Scholar 

  32. Woods DA, Bain CD (2014) Total internal reflection spectroscopy for studying soft matter. Soft Matter 10:1071–1096

    Article  CAS  Google Scholar 

  33. Quiles F, Burneau A (1998) Infrared and Raman spectroscopic study of uranyl complexes: hydroxide and acetate derivatives in aqueous solution. Vib Spectrosc 18:61–75

    Article  CAS  Google Scholar 

  34. Pasilis SP, Pemberton JE (2003) Speciation and coordination chemistry of uranyl(VI)-citrate complexes in aqueous solution. Inorg Chem 42:6793–6800

    Article  CAS  Google Scholar 

  35. Lucks C, Rossberg A, Tsushima S, Foerstendorf H, Scheinost AC, Berrnhard G (2012) Aqueous uranium(VI) complexes with acetic and succinic acid: speciation and structure revisited. Inorg Chem 51:12288–12300

    Article  CAS  Google Scholar 

  36. Quach DL, Wai CM, Pasilis SP (2010) Characterization of uranyl (VI) nitrate complexes in a room temperature ionic liquid using attenuated total reflection-Fourier transform infrared spectrometry. Inorg Chem 49:8568–8572

    Article  CAS  Google Scholar 

  37. Pasilis SP, Blumenfeld A (2011) Effect of nitrate, perchlorate, and water on uranyl (VI) speciation in a room-temperature ionic liquid: a spectroscopic investigation. Inorg Chem 50:8302–8307

    Article  CAS  Google Scholar 

  38. Stark A, Behrend P, Braun O, Müller A, Ranke J, Ondruschka B, Jastorff B (2008) Purity specification methods for ionic liquids. Green Chem 10:1152–1161

    Article  CAS  Google Scholar 

  39. Liu Y, Chu T, Wang X (2013) A 2:1 dicationic complex of tetraethyl methylenebisphosphonate with uranyl ion in acetonitrile and ionic liquids. Inorg Chem 52:848–854

    Article  CAS  Google Scholar 

  40. Görller-Walrand C, De Houwer S, Fluyt L, Binnemans K (2004) Spectroscopic properties of uranyl chloride complexes in non-aqueous solvents. Phys Chem Chem Phys 6:3292–3298

    Article  Google Scholar 

  41. Naito K, Suzuki T (1962) The mechanism of the extraction of several uranyl salts by tri-n-butyl phosphate. J Phys Chem 66:989–995

    Article  CAS  Google Scholar 

  42. Gaillard C, El Azzi A, Billard I, Bolvin H, Hennig C (2005) Uranyl complexation in fluorinated acids (HF, HBF4, HPF6, HTf2N): a combined experimental and theoretical study. Inorg Chem 44:852–861

    Article  CAS  Google Scholar 

  43. Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds Part A. Theory and applications in inorganic chemistry. Part A. John Wiley & Sons, Chichester

    Google Scholar 

  44. Nukada K, Naito K, Maeda U (1960) On the mechanism of the extraction of uranyl nitrate by tributyl phosphate II. Infrared Study. Bull Chem Soc Jpn 33:894–898

    Article  CAS  Google Scholar 

  45. Freire MG, Carvalho PJ, Gardas RL, Marrucho IM, Santos LM, Coutinho JA (2008) Mutual solubilities of water and the [Cnmim][Tf2N] hydrophobic ionic liquids. J Phys Chem B 112:1604–1610

    Article  CAS  Google Scholar 

  46. Noack K, Schulz PS, Paape N, Kiefer J, Wasserscheid P, Leipertz A (2010) The role of the C2 position in interionic interactions of imidazolium based ionic liquids: a vibrational and NMR spectroscopic study. Phys Chem Chem Phys 12:14153–14161

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to the National Natural Science Foundation of China (Grant No. 91026011 & No. 11575010) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiwei Chu.

Additional information

Yue Wang and Yupeng Liu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 598 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, Y. & Chu, T. Spectroscopic studies on uranyl complexes with tri-n-butyl phosphate (TBP) in ionic liquids. J Radioanal Nucl Chem 308, 1071–1079 (2016). https://doi.org/10.1007/s10967-015-4608-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4608-1

Keywords

Navigation