Skip to main content
Log in

Thermogravimetric analysis of wood, holocellulose, and lignin from five wood species

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermogravimetry has been widely applied to the study of wood and cellulose materials. There is a general agreement that decomposition of hemicellulose, cellulose, and ligning take place in a relatively narrow range of temperature, partially overlapping. There is no a definitive demonstration of which thermal feature corresponds to each component. In this study, three hardwood and two softwood species were considered: Castannea sativa, Eucaliptus globulus, Quercus robur, Pinus pinaster, and Pinus sylvestris. Thermogravimetric analysis of wood powder, ethanol-extracted wood, holocellulose, and lignin, obtained from those species revealed some important differences between hardwood and softwood holocelluloses and an important role of the ethanol-extractives, which explain the different behavior observed in both kinds of wood. FTIR spectra obtained from the evolved gases helped to clarify some degradation steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fengel D, Wegener G. In: Wood: chemistry, ultrastructure, reactions. Berlin: W. de Gruyter; 1984.

  2. Shebani AN, van Reenen AJ, Meincken M. The effect of wood extractives on the thermal stability of different wood species. Thermochim Acta. 2008;471:43–50.

    Article  CAS  Google Scholar 

  3. Carrier M, Loppinet-Serani A, Denux D, Lasnier J-M, Ham-Pichavant F, Cansell F, Aymonier C. Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy. 2011;35:298–307.

    Article  CAS  Google Scholar 

  4. Wu C-H, Chang C-Y, Lin J-P. Pyrolysis kinetics of paper mixtures in municipal solid waste. J Chem Tech Biotechnol. 1997;68:65–74.

    Article  CAS  Google Scholar 

  5. Raveendran K, Ganesh A. Heating value of biomass and biomass pyrolysis products. Fuel. 1996;75:1715–20.

    Article  CAS  Google Scholar 

  6. Gašparovič L, Koreňová Z, Jelemenský Ľ. Kinetic study of wood chips decomposition by TGA. Chem Pap. 2009;64:174–81.

    Google Scholar 

  7. Yorulmaz SY, Atimtay AT. Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis. Fuel Proc Tech. 2009;90:939–46.

    Article  CAS  Google Scholar 

  8. Severiano L, Lahr F, Bardi M, Machado L. Evaluation of the effects of gamma radiation on thermal properties of wood species used in Brazilian artistic and cultural heritage. J Therm Anal Calorim. 2011;106:783–6.

    Article  CAS  Google Scholar 

  9. Qu H, Wu W, Jiao Y, Xie J, Xu J. Investigation on the thermal decomposition and flame retardancy of wood treated with a series of molybdates by TG–MS. J Therm Anal Calorim. 2011;105:269–77.

    Article  CAS  Google Scholar 

  10. Budrugeac P, Emandi A. The use of thermal analysis methods for conservation state determination of historical and/or cultural objects manufactured from lime tree wood. J Therm Anal Calorim. 2010;101:881–6.

    Article  CAS  Google Scholar 

  11. Tarrio-Saavedra J, Naya S, Francisco-Fernandez M, Lopez-Beceiro J, Artiaga R. Functional nonparametric classification of wood species from thermal data. J Therm Anal Calorim. 2011;104:87–100.

    Article  CAS  Google Scholar 

  12. Pettersen RC. The chemical composition of wood. In: Rowell R, editor. The chemistry of solid wood, vol. 207. Washington: American Chemical Society; 1984. p. 57–126.

    Chapter  Google Scholar 

  13. Hill CAS. Wood modification: chemical thermal and other processes. Chichester: Wiley; 2006.

    Book  Google Scholar 

  14. Bourgois J, Bartholin MC, Guyonnet R. Thermal treatment of wood: analysis of the obtained product. Wood Sci Technol. 1989;23:303–10.

    Article  CAS  Google Scholar 

  15. Nassar M, MacKay G. Mechanism of thermal decomposition of lignin. Wood Fiber Sci. 1984;16:441–53.

    CAS  Google Scholar 

  16. Dorado J, Claassen FW, van Beek TA, Lenon G, Wijnberg JBPA, Sierra-Alvarez R. Elimination and detoxification of softwood extractives by white-rot fungi. J Biotechnol. 2000;80:231–40.

    Article  CAS  Google Scholar 

  17. Fernandez MP, Watson PA, Breuil C. Gas chromatography-mass spectrometry method for the simultaneous determination of wood extractive compounds in quaking aspen. J Chrom A. 2001;922:225–33.

    Article  CAS  Google Scholar 

  18. Kallioinen A, Vaari A, Rättö M, Konn J, Siika-aho M, Viikari L. Effects of bacterial treatments on wood extractives. J Biotechnol. 2003;103:67–76.

    Article  CAS  Google Scholar 

  19. Ishida Y, Goto K, Yokoi H, Tsuge S, Ohtani H, Sonoda T, Ona T. Direct analysis of phenolic extractives in wood by thermochemolysis-gas chromatography in the presence of tetrabutylammonium hydroxide. J Anal Appl Pyrol. 2007;78:200–6.

    Article  CAS  Google Scholar 

  20. Zhang X, Nguyen D, Paice MG, Tsang A, Renaud S. Degradation of wood extractives in thermo-mechanical pulp by soybean lipoxygenase. Enzym Microb Tech. 2007;40:866–73.

    Article  CAS  Google Scholar 

  21. Pandey K. A note on the influence of extractives on the photo-discoloration and photo-degradation of wood. Polymer Degrad Stabil. 2005;87:375–9.

    Article  CAS  Google Scholar 

  22. Hillis W. Formation and properties of some wood extractives. Phytochemistry. 1972;11:1207–18.

    Article  CAS  Google Scholar 

  23. Mészáros E, Jakab E, Várhegyi G. TG/MS, Py-GC/MS and THM-GC/MS study of the composition and thermal behavior of extractive components of Robinia pseudoacacia. J Anal Appl Pyrol. 2007;79:61–70.

    Article  Google Scholar 

  24. Várhegyi G, Grønli MG, Di Blasi C. Effects of sample origin, extraction, and hot-water washing on the devolatilization kinetics of chestnut wood. Ind Eng Chem Res. 2004;43:2356–67.

    Article  Google Scholar 

  25. Artiaga R, Cao R, Naya S, González-Martín B, Mier J, García A. Separation of overlapping processes from TGA data and verification by EGA. J ASTM Int. 2005;2:12795.

    Article  Google Scholar 

  26. Pan W, Whitely N, Xu W, Li S. Characterization of polymeric materials by thermal analysis spectroscopy and microscopic techniques. In: Artiaga R, editor. Thermal analysis. Fundamentals and applications to material characterization. A Coruña: Universidade da Coruña, Servicio de Publicaciones; 2005. p. 141–154.

  27. Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Ann Rev Plant Biol. 2003;54:519–46.

    Article  CAS  Google Scholar 

  28. Zhao H, Cao Y, Sit S, Lineberry Q, Pan W. Thermal characteristics of bitumen pyrolysis. J Thermal Anal Calorim. 2011. doi:10.1007/s10973-011-1590-x.

  29. Hu S, Hu Y, Song L, Lu H. The potential of ferric pyrophosphate for influencing the thermal degradation of cotton fabrics. J Thermal Anal Calorim. 2011. doi:10.1007/s10973-011-1732-1.

  30. Evans RJ, Milne TA, Soltys MN. Direct mass-spectrometric studies of the pyrolysis of carbonaceous fuels: III primary pyrolysis of lignin. J Anal Appl Pyrol. 1986;9:207–36.

    Article  CAS  Google Scholar 

  31. Garcia F, Rodriguez JJ, Martin F. Posibilidades de aprovechamiento de la lignina en la industria química. Ingen Quim 1984;10:249–254.

    Google Scholar 

  32. Caballero J, Font R, Marcilla A. Comparative study of the pyrolysis of almond shells and their fractions, holocellulose and lignin. Product yields and kinetics. Thermochim Acta. 1996;276:57–77.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially funded by the Spanish Ministerio de Educacion y Ciencia MTM2008-00166 and MAT2010-21342-C02-01. The first author acknowledges Consellería de Educación e Ordenación Universitaria of Xunta de Galicia (Spain) for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Artiaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sebio-Puñal, T., Naya, S., López-Beceiro, J. et al. Thermogravimetric analysis of wood, holocellulose, and lignin from five wood species. J Therm Anal Calorim 109, 1163–1167 (2012). https://doi.org/10.1007/s10973-011-2133-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-2133-1

Keywords

Navigation