Skip to main content
Log in

Method of preparation and thermodynamic properties of transparent Y3Al5O12 nanoceramics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

We first introduce the latest experimental results, i.e., production of the fine nanostructured and near fully dense transparent Y3Al5O12 (YAG) bulks at high pressure and modest temperature (2.0–5.0 GPa and 300–500 °C). And then, we employ the first-principles plane wave pseudopotential density functional theory method to calculate the equilibrium lattice parameters and the thermodynamic properties of YAG. The obtained lattice parameters are consistent with the experimental data and the available theoretical data of others. Through the quasi-harmonic Debye model, the dependences of the normalized primitive volume V/V 0 on pressure P, the Debye temperature \( \Uptheta_{\rm{D}} \), and the heat capacity C V on pressure P and temperature T, as well as the variation of the thermal expansion α with temperature and pressure are obtained successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yoder HS, Keith ML. Complete substitution of aluminium for silicon: the system 3MnO·Al2O3·3SiO2–3Y2O3·5Al2O3. Am Mineralogist. 1951;36:519–33.

    CAS  Google Scholar 

  2. Rabinovitch Y, Tétard D, Faucher MD, Pham-Thi M. Transparent polycrystalline neodymium doped YAG: synthesis parameters, laser efficiency. Opt Mater. 2003;24:345–51.

    Article  CAS  Google Scholar 

  3. Saito N, Matsuda SI, Ikegami T. Fabrication of transparent yttria ceramics at low temperature using carbonate derived powder. J Am Ceram Soc. 1998;81:2023–8.

    Article  CAS  Google Scholar 

  4. Zych E, Hreniak D, Stręk W, Kępiński L, Domagała K. Sintering properties of urea-derived Lu2O3-based phosphors. J Alloys Compd. 2002;341:391–4.

    Article  CAS  Google Scholar 

  5. Ikesue A, Furusato I, Kamata K. Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method. J Am Ceram Soc. 1995;78(1):225–8.

    Article  CAS  Google Scholar 

  6. Ikesue A, Kinoshita T, Kamata K, Yoshida K. Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers. J Am Ceram Soc. 1995;78:1033–40.

    Article  CAS  Google Scholar 

  7. Durrani SK, Saeed K, Qureshi AH, Hmad MA, Arif M, Hussain N, Mohammad T. Growth of Nd-doped YAG powder by sol spray process. J Therm Anal Calorim. 2010;104:645–51.

    Article  Google Scholar 

  8. Carvalho JF, De Vicente FS, Marcellin N, Odier P, Hernandes AC, Ibanez A. Synthesis of YAP phase by a polymeric method and phase progression mechanisms. J Therm Anal Calorim. 2009;96:891–6.

    Article  CAS  Google Scholar 

  9. Fedyk R, Hreniak D, Łojkowski W, Strek W, Matysiak H, Grzanka E, Gierlotka S, Mazur P. Method of preparation and structural properties of transparent YAG nanoceramics. Opt Mater. 2007;29:1252–7.

    Article  CAS  Google Scholar 

  10. Pazik R, Głuchowski P, Hreniak D, Strek W, Roś M, Fedyk R, Łojkowski W. Fabrication and luminescence studies of Ce:Y3Al5O12 transparent nanoceramic. Opt Mater. 2008;30:714–8.

    Article  CAS  Google Scholar 

  11. Hreniak D, Strek W, Głuchowski P, Fedyk R, Łojkowski W. The concentration dependence of luminescence of Nd:Y3Al5O12 nanoceramics. J Alloys Compd. 2008;451:549–52.

    Article  CAS  Google Scholar 

  12. Lukowiak A, Wiglusz RJ, Maczka M, Gluchowski P, Strek W. IR and Raman spectroscopy study of YAG nanoceramics. Chem Phys Lett. 2010;494:279–83.

    Article  CAS  Google Scholar 

  13. Hreniak D, Fedyk R, Bednarkiewicz A, Stre W, Łojkowski W. Luminescence properties of Nd:YAG nanoceramics prepared by low temperature high pressure sintering method. Opt Mater. 2007;29:1244–51.

    Article  CAS  Google Scholar 

  14. Hreniak D, Gierlotka S, Łojkowski W, Strek W, Mazur P, Fedyk R. High-pressure induced structural decomposition of RE-doped YAG nanoceramics. Diffus Defect Data B. 2005;106:17–22.

    CAS  Google Scholar 

  15. Vovk EA, Deineka TG, Doroshenko AG, Tkachenko VF, Tolmachev AV, Yakovetskii RP, Petrusha IA, Tkach VN, Turkevich VZ, Danilenko NI. Production of the Y3Al5O12 transparent nanostructured ceramics. J Superhard Mater. 2009;31:252–9.

    Article  Google Scholar 

  16. Yavetskiy RP, Vovk EA, Doroshenko AG, Danylenko MI, Lopin AV, Petrusha IA, Tkachenko VF, Tolmachev AV, Turkevich VZ. Y3Al5O12 translucent nanostructured ceramics-obtaining and optical properties. Ceram Int. 2011;37:2477.

    Article  CAS  Google Scholar 

  17. Liu K, He DW, Wang HM, Lu TC, Li F, Zhou XL. High-pressure sintering mechanism of yttrium aluminum garnet (Y3Al5O12) transparent nanoceramics. Scripta Mater. 2012;66:319–22.

    Article  CAS  Google Scholar 

  18. Xu YN, Ching WY. Electronic structure of yttrium aluminium garnet. Phys Rev B. 1999;59:10530–5.

    Article  CAS  Google Scholar 

  19. Muñoz-García AB, Anglada E, Seijo L. First-principles study of the structure and the electronic structure of yttrium aluminum garnet Y3Al5O12. Int J Quantum Chem. 2009;109:1991–8.

    Article  Google Scholar 

  20. Tong SH, Lu TC, Guo W. Synthesis of YAG powder by alcohol–water co-precipitation method. Mater Lett. 2007;61:4287–9.

    Article  CAS  Google Scholar 

  21. Scherrer P. Estimation of the size and internal structure of colloidal particles by means of röntgen. Nachr Ges Wiss Götingen, Math-Pys Kl. 1981;2:96–100.

    Google Scholar 

  22. Chen C, He DW, Kou ZL, Peng F, Yao L, Yu RC, Bi Y. B6O-based composite to rival polycrystalline cubic boron nitride. Adv Mater. 2007;19:4288–91.

    Article  CAS  Google Scholar 

  23. Li JG, Ikegami T, Lee JH, Mori T. Low-temperature fabrication of transparent yttrium aluminum garnet (YAG) ceramics without additives. J Am Ceram Soc. 2000;83:961–3.

    Article  CAS  Google Scholar 

  24. Segall MD, Linda PLD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys. 2002;14:2717–43.

    CAS  Google Scholar 

  25. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B. 1990;4:7892–5.

    Article  Google Scholar 

  26. Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B. 1992;45:13244–9.

    Article  Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–8.

    Article  CAS  Google Scholar 

  28. Ceperley DM, Alder BJ. Ground state of the electron gas by a stochastic method. Phys Rev Lett. 1980;45:566–9.

    Article  CAS  Google Scholar 

  29. Monkhorst J, Pack JD. Special points for brillouin-zone integrations. Phys Rev B. 1976;13:5188–92.

    Article  Google Scholar 

  30. Lim AR. Thermodynamic properties and phase transitions of Tutton salt (NH4)2Co(SO4)2·6H2O crystals. J Therm Anal Calorim. 2011;. doi:10.1007/s10973-011-1849-2.

    Google Scholar 

  31. Atanasova L, Baikusheva-Dimitrova G. Heat capacity and thermodynamic properties of tellurites Yb2(TeO3)3, Dy2(TeO3)3 and Er2(TeO3)3. J Therm Anal Calorim. 2011;. doi:10.1007/s10973-011-1325-z.

    Google Scholar 

  32. Xue BD, Yang Q, Chen SP, Gao SL. Synthesis, crystal structure, and thermodynamics of a high-nitrogen copper complex with N,N-bis-(1(2)H-tetrazol-5-yl) amine. J Therm Anal Calorim. 2010;101:997–1002.

    Article  CAS  Google Scholar 

  33. Knyazev A, Maczka M, Kuznetsova N, Hanuza J, Markin A. Thermodynamic properties of rubidium niobium tungsten oxide. J Therm Anal Calorim. 2009;98:843–8.

    Article  CAS  Google Scholar 

  34. Li XY, Wu YQ, Gu DH, Gan FX. Synthesis, spectral and thermal properties of some transition metal(II) complexes with a novel ligand derived from thiobarbituric acid. J Therm Anal Calorim. 2009;98:387–94.

    Article  CAS  Google Scholar 

  35. Blanco MA, Francisco E, Luana V. GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput Phys Commun. 2004;158:57–72.

    Article  CAS  Google Scholar 

  36. Guo HZ, Chen XR, Cai LC, Zhu J, Gao J. Structural and thermodynamic properties of MgB2 from first-principles calculations. Solid State Commun. 2005;134:787–90.

    Article  CAS  Google Scholar 

  37. Chen XR, Wang HY, Cheng Y, Hao YJ. First-principles calculations for structure and equation of state of MgB2 at high pressure. Phys B. 2005;307:281–6.

    Article  Google Scholar 

  38. Guo HZ, Chen XR, Cai LC, Zhu J, Gao J. First-principles calculations of elastic constants of superconducting MgB2. Chin Phys Lett. 2005;. doi:10.1088/0256-307X/22/7/056.

    Google Scholar 

  39. Zhou XL, Liu K, Chen XR, Zhu J. Structural and thermodynamic properties of AlB2 compound. Chin Phys. 2006;15:3014–8.

    Article  CAS  Google Scholar 

  40. Liu K, He DW, Zhou XL, Chen HH. First-principles study of structural and thermodynamic properties of osmium. Phys B. 2011;406:3065–9.

    Article  CAS  Google Scholar 

  41. Liu K, Zhou XL, Chen HH, Lu LY. Phase transition and thermodynamic properties of TiN under pressure via first-principles calculations. J Therm Anal Calorim. 2011;. doi:10.1007/s10973-011-1927-5.

    Google Scholar 

  42. Lu LY, Chen XR, Yu BR, Gou QQ. First-principles calculations for transition phase and thermodynamic properties of GaAs. Chin Phys. 2006;. doi:10.1088/1009-1963/15/4/022.

    Google Scholar 

  43. Hu CE, Zeng ZY, Cheng Y, Chen XR, Cai LC. First-principles calculations for electronic, optical and thermodynamic properties of ZnS. Chin Phys B. 2008;. doi:10.1088/1674-1056/17/10/053.

    Google Scholar 

  44. Lu LY, Chen XR, Chen Y, Zhou JZ. Transition phase and thermodynamic properties of GaN via first-principles calculations. Solid State Commun. 2005;136:152–6.

    Article  CAS  Google Scholar 

  45. Blanco MA, Pendás AM, Francisco E, Recio JM, Franco R. Thermodynamical properties of solids from microscopic theory: applications to MgF2 and Al2O3. J Mol Struct (Theochem). 1996;368:245–55.

    Article  CAS  Google Scholar 

  46. Flórez M, Recio JM, Francisco E, Blanco MA, Pendás AM. First-principles study of the rock salt-cesium chloride relative phase stability in alkali halides. Phys Rev B. 2002;66:144112/1–8.

    Google Scholar 

  47. Francisco E, Sanjurjo MA. Atomistic simulation of SrF2 polymorphs. Phys Rev B. 2001;63:094107/1–9.

    Google Scholar 

  48. Yu R, Zhang XF. Platinum nitride with fluorite structure. Appl Phys Lett. 2005;86:121913–5.

    Article  Google Scholar 

  49. Stampfl C, Mannstadt W, Asahi R, Freeman AJ. Electronic structure and physical properties of early transition metal mononitrides: density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations. Phys Rev B. 2001;63:155106–16.

    Article  Google Scholar 

  50. Poirier JP, Tarantol A. A logarithmic equation of state. Phys Earth Planet Int. 1998;109:1–8.

    Article  Google Scholar 

  51. Euler F, Bruce JA. Oxygen coordinates of compounds with garnet structure. Acta Crystallogr. 1965;19:971–8.

    Article  CAS  Google Scholar 

  52. Hofmeiser AM, Campbell KR. Infrared spectroscopy of yttrium aluminum, yttrium gallium, and yttrium iron garnets. J Appl Phys. 1992;72:638–46.

    Article  Google Scholar 

  53. Stoddart PR, Ngoepe PE, Mjwara PM, Comins JD, Saunders GA. High-temperature elastic constants of yttrium aluminum garnet. J Appl Phys. 1993;73:7298–301.

    Article  CAS  Google Scholar 

  54. Alton WJ, Barow AJ. Elastic constants of single-crystal YIG. J Appl Phys. 1967;32:1172–3.

    Google Scholar 

  55. Yogurtcu YK, Miller AJ, Saunders GA. Elastic behavior of YAG under pressure. J Phys C. 1980;13:6585–97.

    Article  CAS  Google Scholar 

  56. Aggarwal RL, Ripin DJ, Ochoa JR, Fan TY. Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range. J Appl Phys. 2005;98:103514–27.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the China 973 Program (Grant No. 2011CB808200), the National Natural Science Foundation of China (Grant No. 11027405), the National Natural Science Foundation of China—NSAF (Grant No. 10976018) and Scientific Research Fund of Sichuan Provincial Education Department (Grant No. 09ZDL01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Lin Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, K., He, DW., Zhou, XL. et al. Method of preparation and thermodynamic properties of transparent Y3Al5O12 nanoceramics. J Therm Anal Calorim 111, 289–294 (2013). https://doi.org/10.1007/s10973-012-2307-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2307-5

Keywords

Navigation