Skip to main content
Log in

Coefficient of thermal expansion evolution for cryogenic preconditioned hybrid carbon fiber/glass fiber-reinforced polymeric composite materials

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Polymeric matrix composites are susceptible to degradation and material properties changes if subjected to low-temperature environmental conditions. This paper attempts to present a study on effective coefficient of thermal expansion for various hybrid carbon fibers/glass fibers polymeric composite structures previously subjected to low-temperature environmental conditioning. The hybrid composite architectures were made from various layers of glass mat and/or glass woven embedded along with layers of unidirectional carbon fibers into a polymeric matrix. The samples were preconditioned to a low-temperature environment at a constant temperature of −35 °C for 1-week long, 24 h/day. The instantaneous CTE and thermal strain fields were recorded with a DIL 402 PC/1 dilatometer from Netzsch GmbH (Germany) by setting a monotonically linear rise of temperature from 20 to 250 °C, at a rate of 1 °C min−1. The experimentally retrieved data were compared with the values obtained by running a micromechanical-based approach simulation on a representative volume element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

E :

Elastic (Young’s) modulus

ν:

Poisson ratio

V :

Volume fraction

c:

Composite

m:

Matrix phase

f:

Fiber

L:

Longitudinal direction

T:

Transversal direction

References

  1. Nam TH, Requena G, Degischer P. Thermal expansion behavior of aluminum matrix composites with densely packed SiC particles. Composites A. 2008;39:856–65.

    Article  Google Scholar 

  2. Huang YD, et al. Analysis of instantaneous thermal expansion coefficient curve during thermal cycling in short fiber reinforced AlSi12CuMgNi composites. J Compos Sci Technol. 2005;65:137–47.

    Article  CAS  Google Scholar 

  3. Dey TK, Triphati M. Thermal properties of silicon powder filled high-density polyethylene composites. Thermochim Acta. 2010;502:35–42.

    Article  CAS  Google Scholar 

  4. Kumar S, et al. Preparation of 3D orthogonal woven C–SiC composite and its characterization for thermo-mechanical properties. Mater Sci Eng. 2011;528:6210–6.

    Article  CAS  Google Scholar 

  5. Ito T, Suganuma T, Wakashima K. Glass fiber/polypropylene composite laminates with negative coefficients of thermal expansion. J Mater Sci Lett. 1999;18:1363–5.

    Article  CAS  Google Scholar 

  6. Landert M, et al. Negative thermal expansion of laminates. J Mater Sci. 2004;39:3563–7.

    Article  CAS  Google Scholar 

  7. Miller W, et al. Reduced thermal stress in composites via negative thermal expansion particulate fillers. Compos Sci Technol. 2009;70:318–27.

    Article  Google Scholar 

  8. Miller W, et al. Negative thermal expansion: a review. J Mater Sci. 2009;44:5441–51.

    Article  CAS  Google Scholar 

  9. Jakubinek M, Whitman C, White MA. Negative thermal expansion materials. Thermal properties and implications for composite materials. J Therm Anal Calorim. 2010;99:165–72.

    Article  CAS  Google Scholar 

  10. Tsukamoto H. A mean-field micromechanical approach to design multiphase composite laminates. Mater Sci Eng. 2011;528:3232–42.

    Article  Google Scholar 

  11. Torquato S. Random heterogeneous materials. Microstructure and macroscopic properties. New York: Springer; 2001.

    Google Scholar 

  12. Nemat-Nasser S, Hori M. Micromechanics: overall properties of heterogeneous materials. 2nd ed. Amsterdam: Elsevier; 1999.

    Google Scholar 

  13. Curtu I, Motoc Luca D. Micromechanics of composite materials. Theoretical models. Brasov: Transilvania University Press; 2009.

    Google Scholar 

  14. Ersoy N, et al. Development of properties of a carbon fiber reinforced thermosetting composite through cure. Composites A. 2010;41:401–9.

    Article  Google Scholar 

  15. Karadeniz ZH, Kumlutas D. A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials. Compos Struct. 2007;78:1–10.

    Article  Google Scholar 

  16. Melro AR, Camanho PP, Pinho ST. Generation of random distribution of fibers in long-fibre reinforced composites. J Compos Sci Technol. 2008;68:2092–102.

    Article  CAS  Google Scholar 

  17. Pan Y, Iorga L, Pelegri AA. Numerical generation of random chopped fiber composite RVE and its elastic properties. J Compos Sci Technol. 2008;68:2792–8.

    Article  CAS  Google Scholar 

  18. Nadeau JC, Ferrari M. Effective thermal expansion of heterogeneous materials with application to low temperature environments. Mech Mater. 2004;36:201–14.

    Article  Google Scholar 

  19. Ivens J, Wevers M, Verpoest I. Influence of carbon-fiber surface-treatment on composite UD strength. Composites. 1994;25:722–8.

    Article  CAS  Google Scholar 

  20. Ju J, et al. An initial and progressive failure analysis for cryogenic composite fuels tank design. J Compos Mater. 2007;41:2545–68.

    Article  Google Scholar 

  21. Tsai YI, et al. Influence of hygrothermal environment on thermal and mechanical properties of carbon fiber/fiberglass hybrid composites. Compos Sci Technol. 2009;69:432–7.

    Article  CAS  Google Scholar 

  22. Kumar SB, Sridhar I, Sivashanker S. Influence of humid environment on the performance of high strength structural carbon fiber composites. Mater Sci Eng A. 2008;498:174–8.

    Article  Google Scholar 

  23. Motoc Luca D et. al. Tailoring thermal properties of hybrid glass fibers/carbon fibers reinforced polymeric composites (presented/to be published). In: Proceedings of the 2011 ASME International Mechanical Engineering Congress & Exposition; 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Luca Motoc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motoc, D.L., Ivens, J. & Dadirlat, N. Coefficient of thermal expansion evolution for cryogenic preconditioned hybrid carbon fiber/glass fiber-reinforced polymeric composite materials. J Therm Anal Calorim 112, 1245–1251 (2013). https://doi.org/10.1007/s10973-012-2560-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2560-7

Keywords

Navigation