Skip to main content
Log in

Thermodynamic analysis of precipitation processes in Nb–Ti-microalloyed Si–Al TRIP steel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The work deals with the thermodynamic calculations of precipitation processes in austenite of the Nb–Ti-microalloyed steel with increased Si and Al content dedicated for the automotive industry. The analysis is based on the equilibrium precipitation of individual MX-type interstitial phases, as well as the effect of various Mn and Si additions is included. The solubility products and corresponding limits of the mutual solubility of microalloy and metalloid additions in austenite were calculated. The temperature sequence of the precipitation under equilibrium conditions was determined. The Dutta–Sellars model has been applied for determination of recrystallization stop temperature of austenite and time needed for Nb(C,N) precipitation. The calculations were verified by microstructure investigations including revealing prior austenite grain size as a function of austenitizing temperature and the identification of complex carbonitrides using transmission electron microscopy. The model calculations are in good agreement with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Suwanpinij P, Prahl U, Bleck W, Kawalla R. Fast algorithms for phase transformations in dual phase steels on the hot strip mill run out table (ROT). Arch Civ Mech Eng. 2012;12:305–11.

    Article  Google Scholar 

  2. Suikkanen PP, Lang VTE, Somani MC, Porter DA, Karjalainen LP. Effect of silicon and aluminium on austenite static recrystallization kinetics in high-strength TRIP-aided steels. ISIJ Int. 2012;52:471–6.

    Article  CAS  Google Scholar 

  3. Wiewiórowska S, Muskalski Z. Analysis the influence of drawing process parameters on the amount of retained austenite in TRIP steel wires. Metalurgija. 2013;52:32–4.

    Google Scholar 

  4. Kokosza A, Pacyna J. Mechanical stability of retained austenite in unalloyed structural steels of various carbon content. Arch Metall Mater. 2010;55:1001–6.

    CAS  Google Scholar 

  5. Pereloma EV, Timokhina IB, Russell KF, Miller MK. Characterization of clusters and ultrafine precipitates in Nb-containing C–Mn–Si steels. Scr Mater. 2006;54:471–6.

    Article  CAS  Google Scholar 

  6. De Ardo AJ, Garcia JE, Hua M, Garcia CI. A new frontier in microalloying: advanced high strength, coated sheet steels. Mater Sci Forum. 2005;500–501:27–38.

    Google Scholar 

  7. Jung J, Lee SJ, Kim S, De Cooman BC. Effect of Ti additions on micro-alloyed Nb TRIP steel. Steel Res Int. 2011;82:857–65.

    Article  CAS  Google Scholar 

  8. Grajcar A, Lesz S. Influence of Nb microaddition on a microstructure of low-alloyed steels with increased manganese content. Mater Sci Forum. 2012;706–709:2124–9.

    Article  Google Scholar 

  9. Adamczyk J, Kalinowska-Ozgowicz E, Ozgowicz W, Wusatowski R. Interaction of carbonitrides V(C, N) undissolved in austenite on the structure and mechanical properties of microalloyed V–N steels. J Mater Process Technol. 1995;53:23–32.

    Article  Google Scholar 

  10. Stojadinovic S, Pekez J, Bajic N. The analysis of hardening of metal materials. J Therm Anal Calorim. 2012;110:461–3.

    Article  CAS  Google Scholar 

  11. Nowotnik A, Siwecki T. The effect of TMCP parameters on the microstructure and mechanical properties of Ti–Nb microalloyed steel. J Microsc. 2010;237:258–62.

    Article  CAS  Google Scholar 

  12. Muszka K, Majta J, Hodgson PD. Modeling of the mechanical behavior of nanostructured HSLA steels. ISIJ Int. 2007;47:1221–7.

    Article  CAS  Google Scholar 

  13. Hakan Atapek S, Erisir E, Gumus S. Modeling and thermal analysis of solidification in a low alloy steel. J Therm Anal Calorim. 2013;114:179–83.

    Article  CAS  Google Scholar 

  14. Lisiecki A. Diode laser welding of high yield steel. In: Proceedings of SPIE. Laser Technology 2012: Application of Lasers. 2013;8703. doi:10.1117/12.2013429.

  15. Gladman T. The physical metallurgy of microalloyed steels. Cambridge: University Press; 1997.

    Google Scholar 

  16. Irvine KJ, Pickering FB, Gladman T. Grain refined C–Mn steels. J Iron Steel Inst. 1967;205:161–82.

    CAS  Google Scholar 

  17. Speer JG, Michael JR, Hansen SS. Carbonitride precipitation in niobium/vanadium microalloyed steels. Metall Trans A. 1987;18A:211–22.

    Article  CAS  Google Scholar 

  18. Adrian H. Thermodynamic model for precipitation of carbonitrides in high strength low alloy steels containing up to three microalloying elements with or without additions of aluminium. Mater Sci Technol. 1992;8:406–20.

    Article  CAS  Google Scholar 

  19. Dutta B, Sellars CM. Effect of composition and process variables on Nb(C, N) precipitation in niobium microalloyed austenite. Mater Sci Technol. 1987;3:197–206.

    Article  CAS  Google Scholar 

  20. Liu WJ, Jonas JJ. Nucleation kinetics of Ti carbonitride in microalloyed austenite. Metall Trans A. 1989;20A:689–96.

    Article  CAS  Google Scholar 

  21. Grajcar A, Opiela M. Microstructure evolution in thermomechanically processed TRIP-type microalloyed steel. In: 3rd international conference on thermomechanical processing of steels. Padua; 2008.

  22. Siciliano F, Jonas JJ. Mathematical modeling of the hot strip rolling of microalloyed Nb, multiply-alloyed Cr–Mo, and plain C–Mn steels. Metall Mater Trans A. 2000;31A:511–30.

    Article  CAS  Google Scholar 

  23. Kundu A, Davis CL, Strangwood M. Grain structure development during reheating and deformation of niobium-microalloyed steels. Mater Manuf Process. 2010;25:125–32.

    Article  CAS  Google Scholar 

  24. Grajcar A, Radwański K, Krztoń H. Microstructural analysis of a thermomechanically processed Si–Al TRIP steel characterized by EBSD and X-ray techniques. Solid State Phenom. 2013;203–204:34–7.

    Article  Google Scholar 

  25. Fonstein N, Yakubovsky O, Bhattacharya D, Siciliano F. Effect of niobium on the phase transformation behaviour of aluminum containing steels for TRIP products. Mater Sci Forum. 2005;500–501:453–60.

    Article  Google Scholar 

  26. Siciliano F, Poliak EI. Modeling of the resistance to hot deformation and the effects of microalloying in high-Al steels under industrial conditions. Mater Sci Forum. 2005;500–501:195–202.

    Article  Google Scholar 

  27. Dong JX, Siciliano F, Jonas JJ, Liu WJ, Essadiqi E. Effect of silicon on the kinetics of Nb(C, N) precipitation during the hot working of Nb-bearing steels. ISIJ Int. 2000;40:613–8.

    Article  CAS  Google Scholar 

  28. Opiela M, Grajcar A. Elaboration of forging conditions on the basis of the precipitation analysis of MX-type phases in microalloyed steels. Arch Civ Mech Eng. 2012;12:427–35.

    Article  Google Scholar 

  29. Mousavi Anijdan SH, Yue S. The necessity of dynamic precipitation for the occurrence of no-recrystallization temperature in Nb-microalloyed steel. Mater Sci Eng A. 2011;528:803–7.

    Article  Google Scholar 

  30. Uranga P, Lopez B, Rodriguez-Ibabe JM. Microstructural modeling of Nb microalloyed steels during thin slab direct rolling processing. Steel Res Int. 2007;78:199–209.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Grajcar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grajcar, A. Thermodynamic analysis of precipitation processes in Nb–Ti-microalloyed Si–Al TRIP steel. J Therm Anal Calorim 118, 1011–1020 (2014). https://doi.org/10.1007/s10973-014-3801-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3801-8

Keywords

Navigation