Skip to main content
Log in

Mobile amorphous, rigid amorphous and crystalline fractions in isotactic polypropylene during fast cooling

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Crystallization of isotactic polypropylene was analyzed by fast scanning calorimetry (Flash DSC) at cooling rates between 1 and 4000 K s−1. By quantitative analysis of the glass transition intensity and the specific transformation enthalpy, the amount of mobile amorphous (MAF), rigid amorphous (RAF) and crystalline fractions (CFs) and its dependency on the cooling rate were determined. During cooling, two different crystalline phases are formed. At slow cooling rates (below 90 K s−1), the α-phase is crystallized. At faster cooling rates mesophase aggregates are formed. The crystalline phase reduces the relaxation time in the MAF independently from the kind of the crystalline phase. The RAF is formed during the crystallization process. In the case of mesophase crystallization, the ratio between CF and RAF is independent of the crystallinity. For α-phase crystals, this ratio depends on the crystallinity. A model for the CF-RAF structure is derived from the reported results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cheng SZD, Cao MY, Wunderlich B. Glass transition and melting behavior of poly(oxy-1,4-phenyleneoxy-1,4-phenylenecarbonyl-1,4-phenylene) (PEEK). Macromolecules. 1986;19:1868–76.

    Article  CAS  Google Scholar 

  2. Menczel J, Wunderlich B. Heat capacity hysteresis of semicrystalline macromolecular glasses. J Polym Sci.: Polym Lett. 1981;19:261–4.

    CAS  Google Scholar 

  3. Menczel JD, Jaffe M. How did we find rigid amorphous phase? J. Thermal. Anal. Calorim. 2007;89:357–62.

    Article  CAS  Google Scholar 

  4. Menczel JD. The rigid amorphous fraction in semicrystalline macromolecules. J. Thermal. Anal. Calorim. 2011;106:7–24.

    Article  CAS  Google Scholar 

  5. Schick C, Wurm A, Mohamed A. Vitrification and devitrification of the rigid amorphous fraction of semicrystalline polymers revealed from frequency-dependent heat capacity. Colloid Polym. Sci. 2001;279:800–6.

    Article  CAS  Google Scholar 

  6. Wunderlich B. Reversible crystallization and the rigid-amorphous phase in semicrystalline macromolecules. Prog. Polym. Sci. 2003;28:383–450.

    Article  CAS  Google Scholar 

  7. Xu H, Cebe P. Heat capacity study of isotactic polystyrene: dual reversible crystal melting and relaxation of rigid amorphous fraction. Macromolecules. 2004;37:2797–806.

    Article  CAS  Google Scholar 

  8. Schick C, Wurm A, Mohammed A. Formation and disappearance of the rigid amorphous fraction in semicrystalline polymers revealed from frequency dependent heat capacity. Thermochim. Acta. 2003;396:119–32.

    Article  CAS  Google Scholar 

  9. Androsch R, Wunderlich B. The link between rigid amorphous fraction in cold-crystallized poly(ethylene terephthalate). Polymer. 2005;46:12556–66.

    Article  CAS  Google Scholar 

  10. Androsch R. Surface structure of folded-chain crystals of poly(R-3-hydroxybutyrate) of different chain length. Polymer. 2008;49:4673–9.

    Article  CAS  Google Scholar 

  11. Zia Q, Mileva D, Androsch R. Rigid amorphous fraction in isotactic polypropylene. Macromolecules. 2008;41:8095–102.

    Article  CAS  Google Scholar 

  12. Di Lorenzo ML. The melting process and the rigid amorphous fraction of cis-1,4-polybutadiene. Polymer. 2009;50:578–84.

    Article  Google Scholar 

  13. Di Lorenzo ML, Androsch R, Stolte I. Tailoring the rigid amorphous fraction of isotactic polybutene-1 by ethylene chain defects. Polymer. 2014;55:6132–9.

    Article  Google Scholar 

  14. Schawe JEK. Analysis of non-isothermal crystallization during cooling and reorganization during heating of isotactic polypropylene by fast scanning DSC. Thermochim. Acta. 2015;603:85–93.

    Article  CAS  Google Scholar 

  15. Rastogi R, Vellinga WP, Rastogi S, Schick C, Meijer HEH. The three-phase structure and mechanical properties of poly(ethylene terephthalate). J. Polym. Sci., Part B: Polym. Phys. 2004;42:2092–106.

    Article  CAS  Google Scholar 

  16. Di Lorenzo ML, Rigahetti MC, Cocca M, Wunderlich B. Coupling between crystal melting and rigid amorphous fraction mobilization in Poly(ethylene terephthalate). Macromolecules. 2010;43:7689–94.

    Article  Google Scholar 

  17. Brückner S, Meille SV, Petraccone VP, Piozzi B. Polymorphism in isotactic polypropylene. Prog. Polym. Sci. 1991;16:361–404.

    Article  Google Scholar 

  18. Turner-Jones A, Aizlewood JM, Beckett DR. Crystalline forms in isotactic polypropylene. Macromol. Chem. 1964;75:134–58.

    Article  CAS  Google Scholar 

  19. Silvestre C, Cimmino S, Duraccio D, Schick C. Isothermal Crystallization of isotactic poly(propylene) studied by superfast calorimetry. Macromol. Rapid Commun. 2007;28:871–81.

    Article  Google Scholar 

  20. van Drongelen M, van Erp TB, Peters GWM. Quantification of non-isothermal, multi-phase crystallization of isotactic polypropylene: the influence of cooling rate and pressure. Polymer. 2012;53:4758–69.

    Article  Google Scholar 

  21. Natta G, Corradini P. Structure properties of isotactic polypropylene. Nuovo Cimento, Suppl. 1960;15:40–51.

    Article  CAS  Google Scholar 

  22. Konishi T, Nishida K, Kanaya T. Crystallization of isotactic polypropylene from prequenched mesomorphic phase. Macromolecules. 2006;39:8035–40.

    Article  CAS  Google Scholar 

  23. Grebowicz J, Lau SF, Wunderlich B. The thermal properties of polypropylene. J. Polym. Sci. Polym. Symp. 1984;71:19–37.

    Article  CAS  Google Scholar 

  24. Corradini P, Petraccone V, DeRosa C, Guerra G. On the structure of the quenched mesomorphic phase of isotactic polypropylene. Macromolecules. 1986;19:2699–703.

    Article  CAS  Google Scholar 

  25. Piccarolo S. Morphological change in isotactic polypropylene as a function of cooling rate. J Macromol Sci Phys B. 1992;31:501–11.

    Article  Google Scholar 

  26. Mileva D, Androsch R, Radusch HJ. Effect of structure on light transmission in isotactic polypropylene and random propylene-1-butene copolymers. Polymer. Bull. 2009;62:561–71.

    Article  CAS  Google Scholar 

  27. De Rosa C, Auriemma F, Galotto N, Di Girolamo R. Mesomorphic form of isotactic polypropylene in stereodefectice polypropylene: sold mesophase or liquid-crystal like structure. Polymer. 2012;53:2422–8.

    Article  Google Scholar 

  28. Androsch R, Di Lorenzo LM, Schick C, Wunderlich B. Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer. 2010;51:4639–62.

    Article  CAS  Google Scholar 

  29. De Santis F, Adamovsky S, Titomanlio G, Schick C. Scanning nanocalorimetry at high cooling rate of isotactic polypropylene. Macromolecules. 2006;39:2562–7.

    Article  Google Scholar 

  30. Schawe JEK. Influence of processing conditions on polymer crystallization measured by fast scanning DSC. J. Thermal. Anal. Calorim. 2014;116:1165–73.

    Article  CAS  Google Scholar 

  31. Mathot V, Pyda M, Pijpers T, Van den Poel G, van de Kerkhof E, van Herwaarden S, van Herwaarden F, Leenaers A. The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers. Thermochim. Acta. 2011;522:36–45.

    Article  CAS  Google Scholar 

  32. Schawe JEK, Pogatscher S. Material characterization by fast scanning calorimetry: practice and applications. In: Mathot VBF, Schick C, editors. fast scanning calorimetry. New York: Springer; 2016. doi:10.1007/978-3-319-31329-0_1.

    Google Scholar 

  33. Schawe JEK, Vermeulen PA, van Drongelen M. A new crystallization process in polypropylene highly filled with calcium carbonate. Colloid Polym. Sci. 2015;293:1607–14.

    Article  CAS  Google Scholar 

  34. Rhoades AM, Williams JL, Androsch R. Crystallization kinetics of polyamide 66 at processing-relevant cooling conditions and high supercooling. Thermochim. Acta. 2015;603:103–9.

    Article  CAS  Google Scholar 

  35. Martorana A, Piccarolo S, Scichilone F. The x-ray determination of the amount of the phases on samples of isotactic poly(propylene) quenched from the melt at different cooling rates. Macromol. Chem. Phys. 1997;198:597–604.

    Article  CAS  Google Scholar 

  36. Brucato V, Piccarolo S, La Carrubba V. An experimental methodology to study polymer crystallization under processing conditions. The influence of high cooling rates. Chem. Eng. Sci. 2002;57:4129–43.

    Article  CAS  Google Scholar 

  37. Schawe JEK. A phenomenological model for the description of the cooling rate dependence of the crystallinity of polymers. J. Appl. Polym. Sci. 2016;. doi:10.1002/app.42977.

    Google Scholar 

  38. Wunderlich B. The ATHAS database on heat capacities of polymers. Pure App. Chem. 1995;67:1019–26.

    Article  CAS  Google Scholar 

  39. Langhe DS, Hilner A, Baer E. Transformation of isotactic polypropylene droplets from the mesophase into the α-phase. J. Polym. Sci., Part B: Polym. Phys. 2011;49:1672–82.

    Article  CAS  Google Scholar 

  40. Schick C, Donth E. Characteristic length of the glass transition: experimental evidence. Physica Spripta. 1991;43:423–9.

    Article  CAS  Google Scholar 

  41. Hedesiu C, Demco DE, Kleppinger R, Vanden Pol G, Gijsbers WG, Blümich B, Remerie K, Litvinov VM. Effect of temperature and annealing on the phase composition, molecular mobility, and the thickness of domains in isotactic polypropylene studied by proton solid-state NMR, SAXS and DSC. Macromolecules. 2007;40:3977–89.

    Article  CAS  Google Scholar 

  42. Yamada K, Hikosaka M, Toda A, Yamazaki S, Tagashira K. Equilibrium melting of isotactic polypropylene with high tacticity. 2. Determination by optical microscopy. Macromolecules. 2003;36:4802–12.

    Article  CAS  Google Scholar 

  43. Zia Q, Androsch R, Radusch H-J, Piccarolo S. Morphology, reorganization and stability of mesomorphic nanocrystals in isotactic polypropylene. Polymer. 2006;47:8163–72.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen E. K. Schawe.

Additional information

The present article is based on the lecture presented at NATAS43 conference in Montreal, Quebec, Canada on 10–13 August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schawe, J.E.K. Mobile amorphous, rigid amorphous and crystalline fractions in isotactic polypropylene during fast cooling. J Therm Anal Calorim 127, 931–937 (2017). https://doi.org/10.1007/s10973-016-5533-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5533-4

Keywords

Navigation