Skip to main content
Log in

Thermal characterization of a series of lignin-based polypropylene blends

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Polypropylene (PP), due to its chemical stability, is considered one of the main responsible of the increasing amount of plastic wastes on earth. To overcome this problem and to reduce the dependence of oil feedstocks, the use of lignocellulosics as fillers or reinforcements in thermoplastic materials has been increasing enormously in the last decades. In the present work, Liquid Wood (a mixture of cellulose, hemp, fax and lignin) was used to prepare, by mechanical mixing followed by thermal extrusion, blends of various PP/Liquid Wood ratios. Differential scanning calorimetry and thermogravimetric analysis experiments were performed in order to verify whether and how much the composition of the blends affects the thermal properties of the obtained compounds. Both calorimetric and thermogravimetric results indicate that the application of PP as a matrix does not limit the processing temperature of Liquid Wood, which may lead to a perfect marketable composite from these components. The addition of Liquid Wood also resulted in enhanced mechanical properties for the PP/Liquid Wood blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Menyhárd A, Faludi G, Varga J. β-Crystallisation tendency and structure of polypropylene grafted by maleic anhydride and its blends with isotactic polypropylene. J Therm Anal Calorim. 2008;93:937–45.

    Article  Google Scholar 

  2. AlMaaded MA, Madi NK, Hodzic A, Soutis C. Influence of additives on recycled polymer blends. J Therm Anal Calorim. 2014;115:811–21.

    Article  CAS  Google Scholar 

  3. Perez CJ, Alvarez VA. Non-isothermal crystallization of biodegradable polymer (MaterBi)/polyolefin (PP)/hemp fibres ternary composites. J Therm Anal Calorim. 2015;120:1445–55.

    Article  CAS  Google Scholar 

  4. Botelho G, Queiros A, Machado A, Frangiosa P, Ferreira J. Enhancement of the thermo oxidative degradability of polystyrene by chemical modification. Polym Degrad Stab. 2004;86(3):493–7.

    Article  CAS  Google Scholar 

  5. Toriz G, Denes F, Young RA. Lignin-polypropylene composites. Part 1: composites from unmodified lignin and polypropylene. Polym Compos. 2002;23:806–13.

    Article  CAS  Google Scholar 

  6. Părpăriţă E, Darie RN, Popescu CM, Uddin MDA, Vasile C. Structure–morphology–mechanical properties relationship of some polypropylene/lignocellulosic composites. Mater Des. 2014;56:763–72.

    Article  Google Scholar 

  7. Paukszta D, Borysiak S. The influence of processing and the polymorphism of lignocellulosic fillers on the structure and properties of composite materials—a review. Materials. 2013;6:2747–67.

    Article  CAS  Google Scholar 

  8. Chen F, Dai H, Dong X, Yang J, Zhong M. Physical properties of lignin-based polypropylene blends. Polym Compos. 2011;32:1019–25.

    Article  CAS  Google Scholar 

  9. Maldhure AV, Ekhe JD, Deenadayalan E. Mechanical properties of polypropylene blended with esterified and alkylated lignin. J Appl Polym Sci. 2012;125:1701–12.

    Article  CAS  Google Scholar 

  10. Bozsódi B, Romhányi V, Pataki P, Kun D, Renner K, Pukánszky B. Modification of interactions in polypropylene/lignosulfonate blends. Mater Des. 2016. doi:10.1016/j.matdes.2016.04.061.

    Google Scholar 

  11. Nedelcu D, Ciofu C, Lohan NM. Microindentation and differential scanning calorimetry of “liquid wood”. Compos B. 2013;55:11–5.

    Article  CAS  Google Scholar 

  12. Blanco I. Lifetime prediction of food and beverage packaging wastes. J Therm Anal Calorim. 2016. doi:10.1007/s10973-015-5169-9.

    Google Scholar 

  13. Blanco I, Bottino FA, Abate L. Influence of n-alkyl substituents on the thermal behaviour of Polyhedral Oligomeric Silsesquioxanes (POSSs) with different cage’s periphery. Thermochim Acta. 2016;623:50–7.

    Article  CAS  Google Scholar 

  14. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  15. Genovese A, Shanks RA. Crystallization and melting of isotactic polypropylene in response to temperature modulation. J Therm Anal Calorim. 2004;75:233–48.

    Article  CAS  Google Scholar 

  16. Blanco I, Siracusa V. Kinetic study of the thermal and thermo-oxidative degradations of polylactide-modified films for food packaging. J Therm Anal Calorim. 2013;112:1171–7.

    Article  CAS  Google Scholar 

  17. Blanco I. End-life prediction of commercial PLA used for food packaging through short term TGA experiments: real chance or low reliability? Chin J Polym Sci. 2014;32:681–9.

    Article  CAS  Google Scholar 

  18. Müller P, Imre B, Bere J, Móczó J, Pukánszky B. Physical ageing and molecular mobility in PLA blends and composites. J Therm Anal Calorim. 2015;122:1423–33.

    Article  Google Scholar 

  19. Pucciariello R, Villani V, Bonini C, D’Auria M, Vetere T. Physical properties of straw lignin-based polymer blends. Polymer. 2004;45:4159–69.

    Article  CAS  Google Scholar 

  20. Ouyang W, Huang Y, Luo H, Wang D. Poly(Lactic Acid) blended with cellulolytic enzyme lignin: mechanical and thermal properties and morphology evaluation. J Polym Environ. 2012;20:1–9.

    Article  CAS  Google Scholar 

  21. Singla RK, Maiti SN, Ghosh AK. Crystallization, morphological, and mechanical response of poly(lactic acid)/lignin-based biodegradable composites. Polym Plast Technol. 2016;55:475–85.

    Article  Google Scholar 

  22. Blanco I, Bottino FA, Bottino P. Influence of symmetry/asymmetry of the nanoparticles structure on the thermal stability of polyhedral oligomeric silsesquioxane/polystyrene nanocomposites. Polym Compos. 2012;33:1903–10.

    Article  CAS  Google Scholar 

  23. Blanco I, Bottino FA. Thermal study on phenyl, hepta isobutyl-polyhedral oligomeric silsesquioxane/polystyrene nanocomposites. Polym Compos. 2013;34:225–32.

    Article  CAS  Google Scholar 

  24. Abate L, Blanco I, Cicala G, Recca G, Scamporrino A. The influence of chain rigidity on the thermal properties of some novel random copolyethersulfones. Polym Degrad Stab. 2010;95(5):798–802.

    Article  CAS  Google Scholar 

  25. Sfiligoj Smole M, Hribernik S, Stana Kleinschek K, Kreže T. Plant fibres for textile and technical applications. In: Grundas S, Stepniewski A, editors. Advances in agrophysical research. InTech; 2013. p. 371–2. doi:10.5772/5237225.

  26. Sahoo S, Misra M, Mohanty AK. Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process. Compos Part A Appl S. 2011;42:1710–8.

    Article  Google Scholar 

  27. Toriz G, Denes F, Young RA. Lignin-polypropylene composites. Part 1: composites from unmodified lignin and polypropylene. Polym Comp. 2002;23(5):806–13.

    Article  CAS  Google Scholar 

  28. Reddy JP, Misra M, Mohanty A. Injection moulded biocomposites from oat hull and polypropylene/polylactide blend: fabrication and performance evaluation. Adv Mech Eng. 2013;5:1–8.

    Google Scholar 

  29. Choudhary P, Mohanty S, Nayak SK, Unnikrishnan L. Poly(L-lactide)/polypropylene blends: evaluation of mechanical, thermal, and morphological characteristics. J Appl Polym Sci. 2011;121:3223–37.

    Article  CAS  Google Scholar 

  30. Leong YW, Abu Bakar MB, Mohd Ishak ZA, Ariffin A, Pukanszky B. Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites. J Appl Polym Sci. 2004;91:3315–26.

    Article  CAS  Google Scholar 

  31. Graupner N, Fischer H, Ziegmann G, Müssig J. Improvement and analysis of fibre/matrix adhesion of regenerated cellulose fibre reinforced PP-, MAPP- and PLA-composites by the use of Eucalyptus globulus lignin. Compos Part B. 2014;66:117–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support received from Regione Siciliana with the project INTEP “INnovazione TEcnologica e di Processo per il settore manifatturiero” POR 4.1.2a and the Italian Minister for Research and University (MIUR) for the support with the project PON1878 Low Noise and PON BRIT. One of the authors (i.e.G. Cicala) wishes to acknowledge the University of Catania for the support on mechanical testing through the grant NanoCult.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignazio Blanco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco, I., Cicala, G., Latteri, A. et al. Thermal characterization of a series of lignin-based polypropylene blends. J Therm Anal Calorim 127, 147–153 (2017). https://doi.org/10.1007/s10973-016-5596-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5596-2

Keywords

Navigation