Skip to main content
Log in

Comparative instrumental investigations of some bile acids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, we present the spectroscopic description (by the means of UATR-FTIR spectroscopy) for four naturally occurring bile acids, namely lithocholic acid (LC), taurocholic acid sodium salt hydrate (TC), taurodeoxycholic acid sodium salt hydrate (TDC) and chenodeoxycholic acid (CDC), as well as their thermal behaviour in dynamic oxidative atmosphere, by TG/DTG/HF means. It was shown that all samples have a good thermal stability, favourized by the presence of cholan-24-oic structural moiety in all samples, as well as the solid-state structure (intermolecular H-bondings for the carboxylic acids CDC and LC and saline structures for TDC and TC, respectively). These data are simple, but of great interest in identifying the presence of these compounds by fast, reproducible and precise instrumental techniques in complex mixtures, such as biliary stones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Burkard I, Von Eckardstein A, Rentsch KM. Differentiated quantification of human bile acids in serum by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2005;826:147–59.

    Article  CAS  Google Scholar 

  2. Zígolo MA, García Liñares G, Baldessari A. New cholic acid derivatives: biocatalytic synthesis and molecular docking study. Steroids. 2016;107:10–9.

    Article  Google Scholar 

  3. Borzellino G, Cordiano C. Biliary lithiasis. Milan: Springer; 2008.

    Book  Google Scholar 

  4. Chuang SC, Hsi E, Lee KT. Genetics of gallstone disease. Adv Clin Chem. 2013;60:143–85.

    Article  CAS  Google Scholar 

  5. Gallagher TK, Parks RW. Gallstones Surg. 2014;32(12):635–42.

    Google Scholar 

  6. Chowdhury AH, Lobo DN. Gallstones Surg. 2011;29(12):610–7.

    Google Scholar 

  7. Paracha PI, Asif Y, Vriesekoop F, Ullah S, Abbas M, Paracha SI, Khan T. Risk factors associated with gallstone disease in women. E-SPEN J. 2012;7(3):e129–34.

    Article  Google Scholar 

  8. Cetta F, Lombardo F, Giubbolini M, Baldi C, Cariati A. Classification of gallstones and epidemiologic studies. Dig Dis Sci. 1995;40(10):2189–91.

    Article  CAS  Google Scholar 

  9. Fu P, Zhang S, Dai K, Zheng KZC. Gallstone classified based on sectional structure and chemical composition. Chin J Surg. 1984;22(5):258–60.

    CAS  PubMed  Google Scholar 

  10. Castro-Torres IG, de Jesús Cárdenas-Vázquez R, Velázquez-González C, Ventura-Martínez R, De la O-Arciniega M, Naranjo-Rodríguez EB, Martínez-Vázquez M. Future therapeutic targets for the treatment and prevention of cholesterol gallstones. Eur J Pharmacol. 2015;765:366–74.

    Article  CAS  Google Scholar 

  11. Buda V, Andor M, Ledeti A, Ledeti I, Vlase G, Vlase T, Cristescu C, Voicu M, Suciu L, Tomescu C. Comparative solid-state stability of perindopril active substance vs. pharmaceutical formulation. Int J Mol Sci. 2017;18(1):164–79.

    Article  Google Scholar 

  12. Fulias A, Vlase G, Vlase T, Onetiu D, Doca N, Ledeti I. Thermal degradation of B-group vitamins: B-1, B-2 and B-6. J Therm Anal Calorim. 2014;118(2):1033–84.

    Article  CAS  Google Scholar 

  13. Ledeti I, Vlase G, Vlase T, Doca N, Bercean V, Fulias A. Thermal decomposition, kinetic study and evolved gas analysis of 1,3,5-triazine-2,4,6-triamine. J Therm Anal Calorim. 2014;118(2):1057–63.

    Article  CAS  Google Scholar 

  14. Ledeti I, Vlase G, Vlase T, Doca N, Fulias A, Suta LM. Comparative thermal stability of two similar-structure hypolipidemic agents Simvastatin and Lovastatin-kinetic study. J Therm Anal Calorim. 2016;125(2):769–75.

    Article  CAS  Google Scholar 

  15. Ledeti A, Vlase G, Vlase T, Bercean V, Murariu MS, Ledeti I, Suta LM. Solid-state preformulation studies of amiodarone hydrochloride. J Therm Anal Calorim. 2016;126(1):181–7.

    Article  CAS  Google Scholar 

  16. Lamcharfi E, Cohen-Solal C, Marquet M, Lutton C, Dupre J, Meyer C. Determinations of molecular associations of some hydrophobic and hydrophilic bile acids by infrared and Raman spectroscopy. J Euro Biophys. 1997;54(4):285–91.

    Article  Google Scholar 

  17. Rudzki A, Ossowska-Chruściel MD, Ordon M, Zając W, Chruściel J. Thermal analysis and simulation model of natural lithocholic acid. J Therm Anal Calorim. 2015;122(1):55–64.

    Article  CAS  Google Scholar 

  18. Levaray N, Zhu XX. Polyurethanes made from bile acids. Chin J Polym Sci. 2016;34(5):616–22.

    Article  CAS  Google Scholar 

  19. Yang L, Xu Y, Su Y, Wu J, Zhao K, Chen J, Wang M. FT-IR spectroscopic study on the variations of molecular structures of some carboxyl acids induced by free electron laser. Spectrochim Acta Part A Mol Biomol Spectrosc. 2005;62(4–5):1209–15.

    Article  Google Scholar 

  20. Budavari S, editor. The Merck index: an encyclopedia of chemicals, drugs, and biologicals. Whitehouse Station: Merck and Co., Inc.; 1996. p. 946.

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant financed by the University of Medicine and Pharmacy “Victor Babes” Timisoara (Grant PIII-C3-PCFI-2016/2017, acronym STONES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Ledeti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledeti, I., Pusztai, A.M., Murariu, M. et al. Comparative instrumental investigations of some bile acids. J Therm Anal Calorim 134, 1345–1350 (2018). https://doi.org/10.1007/s10973-018-7163-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7163-5

Keywords

Navigation