Skip to main content
Log in

Influence of slip over an exponentially moving vertical plate with Caputo-time fractional derivative

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this article, the impact of a MHD is analyzed on a VF accompanying double convection, because of the transfer inducted by temperature and concentration gradients along with the slip at the boundary. Furthermore, impacts of chemical reaction and heat generation are also taken into account. The concept of non-integer Caputo time fractional derivative is utilized for a generalized VF model comprising three PDEs of momentum, heat and mass transfer accompanying initial and boundary constraints. The LT technique and Stf.A and Tzu.A are acquired to utilize the desirable outcomes of velocity, temperature and concentration. The influence of physical parameters and flow is graphically analyzed via computational software (MathCad). The outcomes attained as specific cases are also marvelously agree with the published results from the literature. Finally, it has been seen that the rising values of the slip coefficient reduces the fluid velocity. This represents the impact of slip at the boundary on the fluid flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(C_{\text{p}}\) :

Specific heat at constant pressure (J kg\(^{-1}\) K\(^{-1}\))

\(B_{0}\) :

Uniform applied magnetic field (N sC\(^{-1}\))

g :

Gravitational acceleration (ms\(^{2}\))

Gr :

Grashof number for heat transfer

Gm:

Grashof number for mass transfer

k :

Thermal conductivity (Wm\(^{2}\) K\(^{-1}\))

Pr:

Prandtl number

s :

Laplace transform parameter

Re:

Reynolds number

T :

Fluid temperature (K)

\(T_\mathrm{w}\) :

Temperature of the plate (K)

\(T_\infty\) :

Temperature far away from the plate (K)

\(C_\mathrm{w}\) :

Concentration of the plate (kg m\(^{-3}\))

\(C_{\infty }\) :

Concentration of the plate (kg m\(^{-3}\))

\(\nu\) :

Kinematic viscosity (m\(^{2}\) s\(^{-1}\))

D :

Solute mass diffusivity (m\(^{2}\) s\(^{-1}\))

\(K_\mathrm{r}\) :

Dimensional chemical reaction parameter (s\(^{-1}\))

\(\lambda\) :

Dimensionless chemical reaction parameter

Q :

Dimensional heat absorption parameter (J K\(^{-1}\) m\(^{-3}\) s\(^{-1}\))

S :

Non-dimensional heat absorption parameter

Sc :

Schmidt number

P :

Pressure (N m\(^{-2}\))

\(\beta _\mathrm{T}\) :

Thermal expansion coefficient (K\(^{-1}\))

\(\beta _\mathrm{C}\) :

Thermal expansion coefficient (K\(^{-1}\))

\(\rho\) :

Density of the fluid (kg m\(^{-3}\))

\(\sigma\) :

Electric conductivity (S m\(^{-1}\))

Nu :

Nusselt number

PDE:

Partial differential equation

B.A :

Boussineq’s approximation

VF:

Viscous fluid

CTFD:

Caputo time fractional derivatives

TF:

Thermal flux

Fr.L:

Fourier’s law

\(\partial (.)_{\text{t}}\) :

First-order partial derivative w.r.t t

\(\partial (.)_{\text{z}}\) :

First-order partial derivative w.r.t z

\(\partial ^{2}(.)_{\text{zz}}\) :

Second-order partial derivative w.r.t z

Fc.L:

Fick’s law

Stf.A:

Stefest’s algorithm

Tzu.A:

Tzou’s algorithm

LT:

Laplace transform

\(\eta\) :

Slip coefficient

\(\eta _{1}\) :

Non-dimensional slip coefficient

H(t):

Heaviside unit step function

J :

Mass flux rate

D :

Diffusivity constant

\(\tau\) :

Shear stress

References

  1. Eskinazi. Fluid mechanics and thermodynamics of our environment. New Yok: Academic Press; 1975.

    Google Scholar 

  2. Markis N, Dargush GF, Constantinou MC. Dynamic analysis of generalized viscoelastic fluids. J Eng Mech. 1963;119:1663–79.

    Google Scholar 

  3. Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel. Progr Fract Differ Appl. 2015;1:1–13.

    Google Scholar 

  4. Caputo M, Fabrizio M. Applications of new time and spatial fractional derivatives with exponential kernel. Progr Fract Differ Appl. 2016;2:1–11.

    Article  Google Scholar 

  5. Atangana A. On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation. Appl Math Comput. 2015;273:948–56.

    Google Scholar 

  6. Atangana A. Non validity of index law in fractional calculus: a fractional differential operator with Markovian and non-Markovian properties. Phys A Stat Mech Appl. 2018;505:688–706.

    Article  Google Scholar 

  7. Atangana A, Gosmez AGF. Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Euro Phys J Plus. 2018;133:166.

    Article  Google Scholar 

  8. Atangana A, Gosmez AGF. Fractional derivatives with no-index law property: application to chaos and statistics. Chaos Sol Fract. 2018;114:516–35.

    Article  Google Scholar 

  9. Khan I, Shah NA, Vieru D. Unsteady flow of generalized Casson fluid with fractional derivative due to an infinite plate. Euro Phys J Plus. 2016;131:1–12.

    Article  Google Scholar 

  10. Khan A, Zaman G. Unsteady magnetohydrodynamic flow of second grade fluid due to impulsive motion of plate. Electron J Math Anal Appl. 2015;3:215–27.

    Google Scholar 

  11. Rasheed A, Wahab A, Shah SQ, et al. Finite differencefinite element approach for solving fractional Oldroyd-B equation. Adv Differ Equ. 2016;2016:236.

    Article  Google Scholar 

  12. Qi H, Jin H. Unsteady rotating flows of a viscoelastic fluid with the fractional Maxwell model between coaxial cylinders. Acta Mech Sin. 2006;22:301–5.

    Article  Google Scholar 

  13. Qi H, Xu M. Unsteady flow of viscoelastic fluid with fractional Maxwell model in a channel. Mech Res Commun. 2007;34:210–2.

    Article  Google Scholar 

  14. Wang S, Zhao M. Analytical solution of the transient electro-osmotic flow of a generalized fractional Maxwell fluid in a straight pipe with a circular cross-section. Euro J Mech B Fluids. 2015;54:82–6.

    Article  Google Scholar 

  15. Wang S, Zhao M, Li X. Transient electro-osmotic flow of generalized Maxwell fluids in a straight pipe of circular cross section. Cent Eur J Phys. 2014;12:445–51.

    Google Scholar 

  16. Mahmood A, Parveen S, Ara A, et al. Exact analytic solution for the unsteady flow of a non-Newtonian fluid between two cylinders with fractional derivative model. Commun Nonlinear Sci Numer Simul. 2009;14:3309–19.

    Article  Google Scholar 

  17. Mahmood A, Fetecau C, Fetecau C, et al. Some exact solutions for the helical flow of a generalized Oldroyd-B fluid in a references circular cylinder. Comput Math Appl. 2008;56:3096–108.

    Article  Google Scholar 

  18. Fetecau C, Fetecau C, Jamil M, et al. Flow of fractional Maxwell fluid between coaxial cylinders. Arch Appl Mech. 2011;81:1153–63.

    Article  Google Scholar 

  19. Jamil M, Rauf A, Zafar AA, et al. New exact analytical solutions for Stoke’s first problem of Maxwell fluid with fractional derivative approach. Comput Math Appl. 2011;62:1013–23.

    Article  Google Scholar 

  20. Jamil M, Najeeb AK, Imran MA. New exact solutions for an Oldroyd-B fluid with fractional derivatives: stoke’s first problem. Int J Nonlinear Sci Numer Simul. 2013;14:443–51.

    Article  Google Scholar 

  21. Khan M, Ali SH, Qi H. On accelerated flows of a viscoelastic fluid with the fractional Burgers’ model. Nonlinear Anal Real World Appl. 2009;10:2286–96.

    Article  Google Scholar 

  22. Kamran M, Imran M, Athar M, et al. On the unsteady rotational flow of fractional Oldroyd-B fluid in cylindrical domains. Meccanica. 2013;47:573–84.

    Article  Google Scholar 

  23. Rasheed A, Wahab A, Shah SQ, Nawaz R. Finite difference-finite ele-ments approach for solving fractional Oldroyd-B equation. Adv Differ Equ. 2016;2016:216–36.

    Article  Google Scholar 

  24. Cattani C, Srivastava HM, Yang XJ, et al. Fract dynamics. Berlin: Walter de Gruyter; 2016.

    Google Scholar 

  25. Vieru D, Fetecau C, Fetecau C. Time-fractional free convection flow near a vertical plate with Newtonian heating and mass diffusion. Therm Sci. 2015;19:S85–98.

    Article  Google Scholar 

  26. Shahid N. A study of heat and mass transfer in a fractional MHD flow over an infinite oscillating plate. Springerplus. 2015;4:1.

    Article  Google Scholar 

  27. Shakeel A, Ahmad S, Khan H, et al. Solutions with Wright functions for time fractional convection flow near a heated vertical plate. Adv Differ Equ. 2016;2016:51.

    Article  Google Scholar 

  28. Chen S, Zheng L, Li C, et al. Time-space dependent fractional viscoelastic MHD fluid flow and heat transfer over accelerating plate with slip boundary. Theor Appl Mech Lett. 2015;5:262–6.

    Article  Google Scholar 

  29. Ali F, Jan SAA, Khan I, et al. Solutions with special functions for time fractional free convection flow of Brinkman-type fluid. Eur Phys J Plus. 2016;131:310.

    Article  CAS  Google Scholar 

  30. Shah NA, Khan I, Aleem M, Imran MA. Influence of magnetic field on double convection problem of fractional viscous fluid over an exponentially moving vertical plate: a new trend of Caputo time fractional derivative model. Adv Mech Eng. 2019;. https://doi.org/10.1177/1687814019860384.

    Article  Google Scholar 

  31. Patil PM, Kumbarwadi N, Aloor S. Effects of MHD mixed convection with non-uniform heat source/sink and cross-diffusion over exponentially stretching sheet. Int J Numer Methods Heat fluid Flow. 2018;. https://doi.org/10.1108/hff-04-2017-0149.

    Article  Google Scholar 

  32. Ramadevi B, Anantha Kumar K, Sugunamma V, Reddy JVR, Sandeep N. Magnetohydrodynamic mixed convective flow of micropolar fluid past a stretching surface using modified Fourier’s heat flux model. J Thermal Anal Calorim. 2019;. https://doi.org/10.1007/s10973-019-08477-1.

    Article  Google Scholar 

  33. Dogonchi AS, Heremet MA, Ganji DD, Pop I. Free convection of copper-water nanofluid in a porous gap between hot rectangular cylinder and cold circular cylinder under the effect of inclined magnetic field. J Therm Anal Calorim. 2019;135(2):1171–84.

    Article  CAS  Google Scholar 

  34. Mukhopadhyay S, Layek GC, Samad SAK. Study of MHD boundary layer flow a heated stretching sheet with variable viscosity. Int J Heat Mass Transf. 2005;48:4460–6.

    Article  CAS  Google Scholar 

  35. Noor NFM, Abbasbandy S, Hashim I. Heat and mass transfer of thermophoretic MHD flow over an inclined radiate isothermal permeable surface in the presence of heat source/sink. Int J Heat Mass Transf. 2012;55:2122–8.

    Article  Google Scholar 

  36. Yazdi MH, Abdullah S, Hashim I, Sopian K. Slip MHD liquid flow and heat transfer over non-linear permeable stretching surface with chemical reaction. Int J Heat Mass Transf. 2011;54:3214–25.

    Article  CAS  Google Scholar 

  37. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Transf. 2019;344:319–33.

    Article  Google Scholar 

  38. Sheikholeslami M, Haq RU, Shafee A, Li Z, Yassir GE, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135:470–8.

    Article  CAS  Google Scholar 

  39. Rao IJ, Rajagopal KR. The effect of the slip boundary condition on the flow of fluids in a channel. Acta Mech. 1999;135:113–26.

    Article  Google Scholar 

  40. Khaled ARA, Vafai K. The effect of slip condition on Stokes and Coutte flow due to an oscillating wall, exact solutions. Int J Non Linear Mech. 2004;39:795–809.

    Article  Google Scholar 

  41. Hayat T, Khan I, Ellahi R, Fetecau C. Some MHD flows of a second grade fluid through the porous medium. J Porous Medium. 2008;11:389–400.

    Article  Google Scholar 

  42. Farhad A, Norzieha M, Sharidan S, Khan I. On accelerated MHD flow in a porous medium with slip condition. Eur J Sci Res. 2011;57:293–301.

    Google Scholar 

  43. Blair GS, Caffyn J. Significance of power-law relations in rheology. Nature. 1945;155:171–2.

    Google Scholar 

  44. Hristov J. Derivatives with non-singular kernels. From the Caputo–Fabrizio definition and beyond: appraising analysis with emphasis on diffusion models. In: Bhalekar S, editor. Frontiers in fractional calculus. 1st ed. Ben Sc Pub; 2017. p. 269–340.

  45. Povstenko Y. Fractional thermoelasticity. Solid mechanics and its applications. Berlin: Springer; 2015. p. 219.

    Book  Google Scholar 

  46. Ahmed N, Vieru D, Fetecau C. Convective flows of generalized time-nonlocal nanofluids through a vertical. Phys Fluid. 2018;30:052002.

    Article  CAS  Google Scholar 

  47. Stehfest’s H. Algorithm 368: numerical inversion of Laplace transforms. Commun ACM. 1970;13:47–9.

    Article  Google Scholar 

  48. Tzou DY. Macro to micro scale heat transfer: the lagging behavior. Washington, DC: Taylor and Francis; 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mudassar Nazar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned}&\phi (\beta ,-\sigma :z)=\Sigma _{n=0}^{\infty }\frac{z^{\text{n}}}{n!\Gamma (\beta -\sigma n)}\\&L^{-1}\left[ \frac{1}{q^{2}}\exp \left( -a\sqrt{q^{\upalpha }+b}\right) \right] =\\&\int _{0}^{\infty }\int _{0}^{t}erfc\left( \frac{a}{2\sqrt{x}}\right) \frac{\exp (-bx)}{\tau }\phi (0,\alpha ;-x\tau ^{-\upalpha })\nonumber \\&\qquad \left[ \frac{(t-\tau )^{1-\upalpha }}{\Gamma (2-\alpha )}+ b(t-\tau )\right] \mathrm{d}\tau \mathrm{d}x\\&L^{-1}\left[ \frac{\exp (-y\sqrt{q+\alpha })}{q-\beta }\right] =e^{\upbeta {\text{t}}}\Phi (y,t;\alpha +\beta )\\&L^{-1}\left[ \frac{\exp (-y\sqrt{q+\alpha })}{q^{2}}\right] =\\&\frac{1}{2}\left[ (t-\frac{y}{2\sqrt{\alpha }})\exp (-y\sqrt{\alpha }) erfc(\frac{a}{2\sqrt{t}}-\sqrt{bt})\right] \nonumber \\&\qquad +\left[ (t+\frac{a}{2\sqrt{b}})\exp (a\sqrt{b})erfc(\frac{a}{2\sqrt{t}}+\sqrt{bt})\right] \\&L^{-1}\{F(y+\beta )\}=\exp (-yt)f(t) where L^{-1}\{F(q)\}=f(t)\\&L^{-1}\left[ \frac{q^{\upalpha -\upbeta }}{q^{\upalpha }+y}\right] \nonumber \\&\quad =t^{\upbeta -1}E_{\alpha ,\beta }(-yt^{\upalpha }); E_{\alpha ,\beta }(z)=\sum _{k=0}^{\infty }\frac{z^{\text{k}}}{\Gamma (\alpha k+\beta )};\quad \alpha>0,\beta >0\\&L^{-1}\left[ \frac{\exp (-y\sqrt{s^{\upalpha }+\beta })}{s^{\upalpha }+b}\right] =\\&\int _{0}^{\infty }erfc(\frac{y}{2\sqrt{u}})\frac{\exp (-\beta u)}{t}\phi (0,-\alpha ;-ut^{-\upalpha })\mathrm{d}u\\&\Psi (y,t;\alpha +\beta )=\\&\frac{1}{2\sqrt{\alpha +\beta }}\left[ \exp (-y\sqrt{\alpha +\beta })erfc\left( \frac{y}{2\sqrt{t}}\right. \right. \\&\qquad \left. \left. -\sqrt{(\alpha +\beta )t}\right) -\exp (y\sqrt{\alpha +\beta })erfc\left( \frac{y}{2\sqrt{t}}+\sqrt{(\alpha +\beta )t}\right) \right] \\&\Phi (y,t;\alpha _{1}+\beta _{1})=\\&\frac{1}{2}\left[ \exp (-y\sqrt{\alpha _{1}+\beta _{1}})erfc\left( \frac{y}{2\sqrt{t}}-\sqrt{(\alpha _{1}+\beta _{1})t}\right) \right. \\&\left. +\exp (y\sqrt{\alpha _{1}+\beta _{1}})erfc\left( \frac{y}{2\sqrt{t}}+\sqrt{(\alpha _{1}+\beta _{1})t}\right) \right] \\&\Phi (y,t;\alpha +\beta )=\\&\frac{1}{2}\left[ \exp (-y\sqrt{\alpha +\beta })erfc\left( \frac{y}{2\sqrt{t}}-\sqrt{(\alpha +\beta )t}\right) \right. \\&\left. +\exp (y\sqrt{\alpha +\beta })erfc\left( \frac{y}{2\sqrt{t}}+\sqrt{(\alpha +\beta )t}\right) \right] \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarwar, S., Nazar, M. & Imran, M.A. Influence of slip over an exponentially moving vertical plate with Caputo-time fractional derivative. J Therm Anal Calorim 145, 2707–2717 (2021). https://doi.org/10.1007/s10973-020-09700-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09700-0

Keywords

Navigation