Skip to main content
Log in

Critical assessment of thermodynamic properties of perovskite-type cesium lead chloride CsPbCl3

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The results of thermochemical study of the CsPbCl3 formation thermodynamics available in literature were critically evaluated by comparison with those calculated from the temperature dependence of EMF of galvanic cells involving CsPbCl3 as well as with the newly obtained solution calorimetric data. The origin of the discrepancy between the values of standard formation enthalpy reported by different scientific groups was identified. Redetermined solution enthalpy of CsPbCl3 in dimethyl sulfoxide allowed correcting the earlier reported value of the standard formation enthalpy of CsPbCl3. As a result, the following consistent set of the thermodynamic functions for CsPbCl3 was obtained: \({\Delta }_{\mathrm{f}}{H}_{298}^{^\circ }\) = (–810.3 ± 0.4) kJ mol−1, \({S}_{298}^{^\circ }\) = (270.1 ± 4.3) J mol−1 K−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nagabhushana GP, Shivaramaiah R, Navrotsky A. Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites. Proc Natl Acad Sci. 2016;113(28):7717. https://doi.org/10.1073/pnas.1607850113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ivanov IL, Steparuk AS, Bolyachkina MS, Tsvetkov DS, Safronov AP, Zuev AY. Thermodynamics of formation of hybrid perovskite-type methylammonium lead halides. J Chem Thermodyn. 2018;116:253–8. https://doi.org/10.1016/j.jct.2017.09.026.

    Article  CAS  Google Scholar 

  3. Wang B, Novendra N, Navrotsky A. Energetics, structures, and phase transitions of cubic and orthorhombic cesium lead iodide (CsPbI3) polymorphs. J Am Chem Soc. 2019;141(37):14501–4. https://doi.org/10.1021/jacs.9b05924.

    Article  CAS  PubMed  Google Scholar 

  4. Wang B, Navrotsky A. Thermodynamic studies of bromide incorporation into cesium lead iodide (CsPbI3). J Phys Chem C. 2020;124(16):8639–42. https://doi.org/10.1021/acs.jpcc.0c01610.

    Article  CAS  Google Scholar 

  5. Wang B, Navrotsky A. Thermodynamics of cesium lead halide (CsPbX3, x= I, Br, Cl) perovskites. Thermochim Acta. 2021;695:178813. https://doi.org/10.1016/j.tca.2020.178813.

    Article  CAS  Google Scholar 

  6. Tsvetkov DS, Mazurin MO, Sereda VV, Ivanov IL, Malyshkin DA, Zuev AY. Formation thermodynamics, stability, and decomposition pathways of CsPbX3 (X = Cl, Br, I) photovoltaic materials. J Phys Chem C. 2020;124(7):4252–60. https://doi.org/10.1021/acs.jpcc.9b11494.

    Article  CAS  Google Scholar 

  7. Brunetti B, Cavallo C, Ciccioli A, Gigli G, Latini A. On the thermal and thermodynamic (In)stability of methylammonium lead halide perovskites. Sci Rep. 2016;6(1):31896. https://doi.org/10.1038/srep31896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Onoda-Yamamuro N, Matsuo T, Suga H. Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II)†. J Phys Chem Solids. 1990;51(12):1383–95. https://doi.org/10.1016/0022-3697(90)90021-7.

    Article  CAS  Google Scholar 

  9. Prochowicz D, Yadav P, Saliba M, Kubicki DJ, Tavakoli MM, Zakeeruddin SM, et al. One-step mechanochemical incorporation of an insoluble cesium additive for high performance planar heterojunction solar cells. Nano Energy. 2018;49:523–8. https://doi.org/10.1016/j.nanoen.2018.05.010.

    Article  CAS  Google Scholar 

  10. Li Z, Chen Z, Yang Y, Xue Q, Yip H-L, Cao Y. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%. Nat Commun. 2019;10(1):1027. https://doi.org/10.1038/s41467-019-09011-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gui P, Zhou H, Yao F, Song Z, Li B, Fang G. Space-confined growth of individual wide bandgap single crystal CsPbCl3 microplatelet for near-ultraviolet photodetection. Small. 2019;15(39):1902618. https://doi.org/10.1002/smll.201902618.

    Article  CAS  Google Scholar 

  12. Yang L, Tsai W-L, Li C-S, Hsu B-W, Chen C-Y, Wu C-I, et al. High-quality conformal homogeneous all-vacuum deposited CsPbCl3 thin films and their UV photodiode applications. ACS Appl Mater Interfaces. 2019;11(50):47054–62. https://doi.org/10.1021/acsami.9b16264.

    Article  CAS  PubMed  Google Scholar 

  13. Vorobev AF, Monaenkova AS, Padunova ID. Thermochemistry of solutions of rubidium and cesium-halides in dimethyl sulfoxide-water mixtures. Zh Obshch Khim. 1978;48(1):11–3.

    CAS  Google Scholar 

  14. Monnin C, Dubois M. Thermodynamics of the CsCl-H2O system at low temperatures. Eur J Mineral. 1999;11(3):477–82.

    Article  CAS  Google Scholar 

  15. Marcus Y. Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents: part 2 - enthalpies and entropies of transfer to nonaqueous solvents. Pure Appl Chem. 1985;57(8):1103–28. https://doi.org/10.1351/pac198557081103.

    Article  CAS  Google Scholar 

  16. Møller CK. Electrochemical investigation of the transition from tetragonal to cubic cæsium plumbo chloride. Mat Fys Medd Dan Vid Selsk. 1960;32(15):1–21.

    Google Scholar 

  17. Holmes HF, Mesmer RE. Thermodynamic properties of aqueous solutions of the alkali metal chlorides to 250 degree C. J Phys Chem. 1983;87(7):1242–55. https://doi.org/10.1021/j100230a030.

    Article  CAS  Google Scholar 

  18. Kilday MV. The enthalpy of solution of SRM 1655 (KCl) in H2O. J Res Natl Bur Stand. 1980;85(6):467–81.

    Article  CAS  Google Scholar 

  19. Plesko S, Kind R, Roos J. Structural phase transitions in CsPbCl3 and RbCdCl3. J Phys Soc Jpn. 1978;45(2):553–7. https://doi.org/10.1143/JPSJ.45.553.

    Article  CAS  Google Scholar 

  20. Hirotsu S. Experimental studies of structural phase transitions in CsPbCl3. J Phys Soc Jpn. 1971;31(2):552–60. https://doi.org/10.1143/JPSJ.31.552.

    Article  CAS  Google Scholar 

  21. Cohen MI, Young KF, Chang TT. WSB. phase transitions in CsPbCl3. J Appl Phys. 1971;42(13):5267–72. https://doi.org/10.1063/1.1659935.

    Article  CAS  Google Scholar 

  22. Tovborg-Jensen N. NQR investigation of phase transitions in cesium plumbochloride. J Chem Phys. 1969;50(1):559–60. https://doi.org/10.1063/1.1670853.

    Article  CAS  Google Scholar 

  23. Hirotsu S, Sawada S. Crystal growth and phase transitions of CsPbCl3. Phys Lett A. 1969;28(11):762–3. https://doi.org/10.1016/0375-9601(69)90608-2.

    Article  CAS  Google Scholar 

  24. Cape JA, White RL, Feigelson RS. EPR study of the structure of CsPbCl3. J Appl Phys. 1969;40(13):5001–5. https://doi.org/10.1063/1.1657345.

    Article  CAS  Google Scholar 

  25. Fujii Y, Hoshino S, Yamada Y, Shirane G. Neutron-scattering study on phase transitions of CsPbCl3. Phys Rev B. 1974;9(10):4549–59. https://doi.org/10.1103/PhysRevB.9.4549.

    Article  CAS  Google Scholar 

  26. Stokka S, Fossheim K, Johansen T, Feder J. Specific heat of CsPbCl3 near three phase transitions. J Phys C: Solid State Phys. 1982;15(14):3053–8. https://doi.org/10.1088/0022-3719/15/14/012.

    Article  CAS  Google Scholar 

  27. Tozaki K, Ishii C, Kojima A, Yoshimura Y, Izuhara O, Yamada K, et al. Observation of `hyperfine multistage transition’ at the 320 K phase transition in CsPbCl3. Phys Lett A. 1999;263(3):203–8. https://doi.org/10.1016/S0375-9601(99)00680-5.

    Article  CAS  Google Scholar 

  28. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, et al. The NBS tables of chemical thermodynamic properties : selected values for inorganic and C1 and C2 organic substances in SI units. J Phys Chem Ref Data. 1982;2:54.

    Google Scholar 

  29. Belov GV, Iorish VS, Yungman VS. IVTANTHERMO for Windows — database on thermodynamic properties and related software. Calphad. 1999;23(2):173–80. https://doi.org/10.1016/S0364-5916(99)00023-1.

    Article  CAS  Google Scholar 

  30. Kelley KK, King EG. Contributions to the data on theoretical metallurgy: XIV. entrophies of the elements and inorganic compounds. US Department of the Interior, Bureau of Mines; 1961.

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Grant No. 18-73-10059).

Funding

This work was supported by the Russian Science Foundation (Grant No. 18–73-10059).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this manuscript.

Corresponding author

Correspondence to D. S. Tsvetkov.

Ethics declarations

Conflicts of interest

All authors confirm that this work is original and has not been published elsewhere, nor is it currently under consideration for publication elsewhere. We have no conflicts of interest to disclose, and all relevant funding sources are properly acknowledged in the manuscript. All authors have approved the manuscript and agreed with its submission to the Journal of Thermal Analysis and Calorimetry.

Data availability

The data relevant to this paper may be obtained from authors upon a request.

Ethical approval

All authors confirm that this work is original and has not been published elsewhere, nor is it currently under consideration for publication elsewhere. All the relevant funding sources are properly acknowledged in the manuscript. All authors have approved the manuscript and agreed with its submission to the Journal of Thermal Analysis and Calorimetry.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsvetkov, D.S., Mazurin, M.O., Sereda, V.V. et al. Critical assessment of thermodynamic properties of perovskite-type cesium lead chloride CsPbCl3. J Therm Anal Calorim 147, 12661–12667 (2022). https://doi.org/10.1007/s10973-022-11480-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11480-8

Keywords

Navigation