Skip to main content

Advertisement

Log in

Changing Temporal Patterns of Forest Carbon Stores and Net Ecosystem Carbon Balance: the Stand to Landscape Transformation

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Short- and long-term patterns of net ecosystem carbon balance (NECB) for small, relatively uniform forest stands have been examined in detail, but the same is not true for landscapes, especially those with heterogeneous disturbance histories. In this paper, we explore the effect of two contrasting types of disturbances (i.e., fire and tree harvest) on landscape level NECB by using an ecosystem process model that explicitly accounts for changes in carbon (C) stores as a function of disturbance regimes. The latter were defined by the average disturbance interval, the regularity of the disturbance interval (i.e., random, based on a Poisson frequency distribution, or regular), the amount of C removed by the disturbance (i.e., severity), and the relative abundance of stands in the landscape with unique disturbance histories. We used the model to create over 300 hypothetical landscapes, each with a different disturbance regime, by simulating up to 200 unique stand histories and averaging their total C stores. Mean NECB and its year-to-year variability was computed by calculating the difference in mean total C stores from one year to the next. Results indicated that landscape C stores were higher for random than for regular disturbance intervals, and increased as the mean disturbance interval increased and as the disturbance severity decreased. For example, C storage was reduced by 58% when the fire interval was shortened from 250 years to 100 years. Average landscape NECB was not significantly different than zero for any of the simulated landscapes. Year-to-year variability in landscape NECB, however, was related to the landscape disturbance regime; increasing with disturbance severity and frequency, and higher for random versus regular disturbance intervals. We conclude that landscape C stores of forest systems can be predicted using the concept of disturbance regimes, a result that may be a useful for adjusting estimates of C storage to broad scales that are solely based on physiological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apps MJ, Bhatti JS, Halliwell DH, Jiang H, Peng CH (2000) Simulated carbon dynamics in the boreal forest of central Canada under uniform and random disturbance regimes. In: Lal R, Kimble JM, Stewart BA (eds) Global climate change and cold regions ecosystems. Lewis Publishers, New York, pp 107–122

    Google Scholar 

  • Baker WL (1989) Effect of scale and spatial heterogeneity on fire-interval distributions. Can J Forest Res 19:700–706

    Google Scholar 

  • Bond-Lamberty B, Wang C, Gower ST (2004) Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Global Change Biol 10:473–487

    Article  Google Scholar 

  • Bormann FH, Likens GE (1979) Catastrophic disturbance and the steady state in northern hardwood forest. Am Sci 67:660–669

    Google Scholar 

  • Chapin III FS, Woodwell GM, Randerson JT, Lovett GM, Rastetter EB, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, Cole JJ, Goulden ML, Harden JW, Heimann M, Howarth RW, Matson PA, McGuire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML, Ryan MG, Running SW, Sala OE, Schlesinger WH, Schulze E-D (in press) Reconciling carbon cycle terminology: a search for consensus. Ecosystems

  • Euskirchen ES, Chen J, Li H, Gustafson EJ, Crow TR (2002) Modeling landscape net ecosystem productivity (LandNEP) under alternate management regimes. Ecol Model 154:75–91

    Article  CAS  Google Scholar 

  • Goulden ML, Munger JW, Fan S-M, Daube BC, Wofsy SC (1996) Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Global Change Biol 2:169–182

    Article  Google Scholar 

  • Harmon ME (2001) Carbon sequestration in forests. J␣Forest 99:24–29

    Google Scholar 

  • Harmon ME, Domingo JB (2001) A user’s guide to STANDCARB version 2.0: a model to simulate the carbon stores in forest stands. Department of Forest Science, Oregon State University, Corvallis, Oregon

    Google Scholar 

  • Harmon ME, Harmon JM, Ferrell WK, Brooks D (1996) Modeling carbon stores in Oregon and Washington forest products: 1900–1992. Climatic Change 33:521–550

    Article  CAS  Google Scholar 

  • Harmon ME, Marks B (2002) Effects of silvicultural treatments on carbon stores in forest stands. Can J Forest Res 32:863–877

    Article  Google Scholar 

  • Houghton RA (1999) The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus 51B:298–313

    CAS  Google Scholar 

  • Houghton RA (2003) Why are estimates of the terrestrial carbon balance so different? Global Change Biol 9:500–509

    Article  Google Scholar 

  • Janisch JE, Harmon ME (2002) Successional changes in live and dead wood stores: Implications for net ecosystem productivity. Tree Physiol 22:77–89

    PubMed  CAS  Google Scholar 

  • Johnson EA, Gutsell SL (1994) Fire frequency models, methods and interpretations. Adv Ecol Res 25:239–287

    Article  Google Scholar 

  • Johnson EA, Van Wagner CE (1985) The theory and use of two fire history models. Can J Forest Res 15:214–220

    Google Scholar 

  • Kuhlbusch TAJ, Andreae MO, Cachier H, Goldammer JG, Lacaux J-P, Shea R, Crutzen PJ (1996) Black carbon formation by savanna fires: measurements and implications for the global carbon cycle. J Geophys Res 101:23, 651–623, 666

    Article  Google Scholar 

  • Kurz WA, Beukema SJ, Apps MJ (1997–1998) Carbon budget implications of the transition from natural to managed disturbance regimes in forest landscapes. Mitigat Adap Strat Global Change 2:405–421

    Article  Google Scholar 

  • Law BE, Turner D, Campbell J, Sun OJ, Van Tuyl S, Ritts WD, Cohen WB (2004) Disturbance and climate effects on carbon stocks and fluxes across Western Oregon USA. Global Change Biol 10:1429–1444

    Article  Google Scholar 

  • Law BE, Waring RH, Anthoni PM, Aber JD (2000) Measurements of gross and net ecosystem productivity and water vapour exchange of a Pinus ponderosa ecosystem, and an evaluation of two generalized models. Global Change Biol 6:155–168

    Article  Google Scholar 

  • Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath LS, Sundquist E, Stallard R, Ciais P, Moorcroft PR, Casperson JP, Shevliakova E, Moore B, Kohlmaier G, Holland EA, Gloor M, Harmon ME, Fan S-M, Sarmiento J, Goodale CL, Schimel D, Field CB (2001) Consistent land- and atmosphere-based U.S. carbon sink estimates. Science 292:2316–2319

    Article  PubMed  CAS  Google Scholar 

  • Peng C, Apps MJ (1999) Modelling the response of net primary productivity (NPP) of boreal forest ecosystems to changes in climate and fire disturbance regimes. Ecol Model 122:175–193

    Article  CAS  Google Scholar 

  • Raison RJ (1979) Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant Soil 51:73–108

    Article  CAS  Google Scholar 

  • Romme WH, Knight DH (1982) Landscape diversity: the concept applied to Yellowstone Park. Bioscience 32:664–670

    Article  Google Scholar 

  • Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore III B, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172

    Article  PubMed  CAS  Google Scholar 

  • Schimel DS, VEMAP Participants, Braswell BH (1997) Continental scale variability in ecosystem processes: models, data, and the role of disturbance. Ecol Monogr 67:251–271

    Article  Google Scholar 

  • Shugart HH, West DC (1981) Long-term dynamics of forest ecosystems. Am Sci 69:647–652

    Google Scholar 

  • Smithwick EAH (2002) Potential carbon storage at the landscape scale in the Pacific Northwest, USA Ph.D. Oregon State University, Corvallis, OR

    Google Scholar 

  • Smithwick EAH, Harmon ME, Domingo JB (2003) Modeling multiscale effects of light limitations and edge-induced mortality on carbon stores in forest landscapes. Landscape Ecol 18:701–721

    Article  Google Scholar 

  • Smithwick EAH, Harmon ME, Remillard SM, Acker SA, Franklin JF (2002) Potential upper bounds of carbon stores in forests of the Pacific Northwest. Ecol Appl 12:1303–1317

    Article  Google Scholar 

  • Smithwick EAH, Turner MG, Mack MC, Chapin III FS (2005) Post-fire soil N cycling in northern conifer forests affected by severe, stand-replacing wildfires. Ecosystems 8:163–181

    Article  CAS  Google Scholar 

  • Sun OJ, Campbell J, Law BE, Wolf V (2004) Dynamics of carbon stocks in soils and detritus across chronosequences of different forest types in the Pacific Northwest, USA. Global Change Biol 10:1470–1481

    Article  Google Scholar 

  • Tans PP, Fung IY, Takahashi T (1990) Observational constraints on the global atmospheric CO2 budget. Science 247:1431–1438

    Article  PubMed  CAS  Google Scholar 

  • Thornley JHM, Cannell MGR (2004) Long-term effects of fire frequency on carbon storage and productivity of boreal forests: a modeling study. Tree Physiol 24:765–773

    PubMed  CAS  Google Scholar 

  • Turner MG, Romme WH, Gardner RH, O’Neill RV, Kratz TK (1993) A revised concept of landscape equilibrium: disturbance and stability on scaled landscapes. Landscape Ecol 8:213–227

    Article  Google Scholar 

  • Van Wagner CE (1978) Age-class distribution and the forest fire cycle. Can J Forest Res 8:220–227

    Article  Google Scholar 

  • Watt AS (1947) Pattern and process in the plant community. J Ecol 35:1–22

    Article  Google Scholar 

  • Wirth C, Schulze E-D, Luhker B, Grigoriev S, Siry M, Hardes G, Ziegler W, Backor M, Bauer G, Vygodskaya NN (2002) Fire and site type effects on the long-term carbon and nitrogen balance in pristine Siberian Scots pine forests. Plant Soil 242:41–63

    Article  CAS  Google Scholar 

  • Zackrisson O, Nilsson M-C, Wardle DA (2003) Key ecological function of charcoal from wildfire in the Boreal forest. Oikos 77:10–19

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the Land Cover/Land-Use Change Program at NASA (grant number NAG5–6242), by the Pacific Northwest Research Station, the H. J. Andrews LTER (DEB-0218088) and the Kaye and Ward Richardson Endowment. We thank Olga Krankina and the anonymous reviewers for their comments and suggestions for improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica A. H. Smithwick.

Appendices

Appendix A

Equations in the disturbance model to calculate the C pool size of live, dead, and stable pools.

In general, C pools equal input minus output fluxes at each time-step:

$$\eqalign{\hbox{C}_{\rm POOL} (t)=\ \hbox{C}_{\rm POOL} (t-1) + \Sigma \hbox{ Input}_{\rm POOL} (t)\cr - \Sigma \hbox{ Output}_{\rm POOL} (t)}$$
(1)
$$\hbox{a. }\Sigma \hbox{Output}_{\rm POOL} (t)= \Sigma \hbox{Loss}_{\rm POOL} (t) +\Sigma \hbox{ TR}_{\rm POOL} (t)$$
$$\hbox{b. }\Sigma\hbox{ Input}_{\rm POOL} (t)=\Sigma\hbox{ TR}_{\rm POOL}(t)$$

Live Pools

An exception to Eq. (1) is the calculation of foliage C (CFOL):

$$\hbox{C}_{\rm FR} (t)=\hbox{C}_{\rm FOL} (t)^* {\bf FR:FOL}$$
(2)

All live pools transfer C to their corresponding dead pool because of tree mortality:

$$\hbox{M}_{\rm LIVE\ POOL}\hbox{(t)}=\hbox{C}_{\rm LIVE\ POOL} (t-1)^* {\bf M}_{{\bf LIVE\ POOL}}$$
(3)

Additionally, fine root and foliage pools transfer C to dead pools via turnover:

$$\Sigma\hbox{ TR}_{\rm POOL}(t)=\hbox{ TU}_{\rm POOL} (t) + \hbox{M}_{\rm POOL} (t)$$
(4)
$$ \hbox{a. TU}_{\rm POOL} (t)=\hbox{C}_{\rm POOL} (t)^* {\bf TU}_{{\bf POOL}}$$

The SW, HR, BR, and CR pools lose C via respiration:

$$ \Sigma\hbox{ Loss}_{\rm POOL} (t)=\hbox{R}_{\rm POOL} (t)$$
(5)
$$\hbox{a. R}_{\rm POOL} (t)=\hbox{C}_{\rm POOL} (t-1)^* {\bf R}_{\bf{POOL}}$$

Allocation of C to sapwood is proportional to foliage C:

$$\Sigma\hbox{ Input}_{\rm SW} (t)=\hbox{C}_{\rm FOL} (t)^* {\bf BGE},$$
(6)

Sapwood transfers C to heartwood via mortality and HW formation:

$$\Sigma\hbox{ TR}_{\rm SW}(t)=\hbox{F}_{\rm HW} (t) + \hbox{M}_{\rm SW} (t)$$
(7)
$$\hbox{a. F}_{\rm HW} (t)=\hbox{C}_{\rm SW} (t-1)^* {\bf F}_{{\bf HW}}$$
$$\Sigma\hbox{Input}_{\rm HW} (t)=\hbox{F}_{\rm HW} (t)$$
(8)

Heartwood transfers C to heart rot via mortality and HR formation:

$$\Sigma\hbox{ TR}_{\rm HW} (t)=\hbox{F}_{\rm HR} (t) + \hbox{M}_{\rm HW}(t)$$
(9)
$$\hbox{a. F}_{\rm HR} (t)=\hbox{C}_{\rm HW} (t-1)^* {\bf F}_{{\bf HR}}$$
$$\Sigma\hbox{ Input}_{\rm HR} (t)=\hbox{F}_{\rm HR} (t)$$
(10)

BR and CR input is proportional to SW input:

$$\Sigma\hbox{ Input}_{POOL} (t)=\Sigma\hbox{ Input}_{\rm SW} (t)^* {\bf POOL:BOLE}$$
(11)

CR and BR transfers C to dead pools via mortality and pruning:

$$\Sigma\hbox{Output}_{\rm POOL} (t)=\hbox{M}_{\rm POOL} (t) + \hbox{P}_{\rm POOL} (t)$$
(12)
$$ \hbox{a. P}_{\rm POOL} (t)=\hbox{C}_{\rm POOL} (t-1)^* {\bf P}_{\bf{POOL}}$$

Dead Pools

Dead pools (except dead HW) receive C from their corresponding live pool:

$$\Sigma\hbox{ Input}_{{\rm DEAD-POOL}} (t)=\Sigma\hbox{ TR}_{\rm POOL} (t)$$
(13)

Dead HW receives C from HW and HR:

$$\Sigma\hbox{Input}_{{\rm DEAD-HW}} (t)=\Sigma\hbox{ TR}_{\rm HW} (t) + \Sigma\hbox{TR}_{\rm HR} (t)$$
(14)

Dead boles are separated into snags and logs. Logs receive C from snags due to snag fall:

$$\eqalign{ \Sigma\hbox{Input}_{{\rm POOL-SNAGS}} (t)\cr \quad=\Sigma\hbox{Input}_{{\rm DEAD- POOL}} (t)^* \%{\bf Snags}}$$
(15)
$$\eqalign{ \Sigma\hbox{ Input}_{{\rm POOL-LOGS}} (t)\cr \quad = (\Sigma\hbox{ Input}_{{\rm DEAD- POOL}} (t)\cr \qquad- \Sigma\hbox{ Input}_{{\rm POOL-SNAGS}} (t))\cr \qquad+ \Sigma\hbox{ TR}_{{\rm POOL-SNAGS}}(t)}$$
(16)
$$\eqalign{ \hbox{a. }\Sigma\hbox{TR}_{{\rm POOL-SNAGS}} (t)\cr \qquad = \hbox{C}_{{\rm POOL-SNAGS}} (t-1)^* {\bf FA}_{POOL}}$$

C lost via decomposition (DDEAD-POOL) t is calculated from the pool’s decay rate, a weighted average of the pool’s existing decay rate and the decay rate associated with its input flux (D).

$$\Sigma\hbox{ Loss}_{\rm DEAD-POOL} (t)=\hbox{D}_{\rm DEAD-POOL} (t)$$
(17)
$$\eqalign{ \hbox{a. D}_{\rm DEAD-POOL} (t)\cr \qquad\quad=\hbox{C}_{\rm DEAD-POOL} (t-1)^* \hbox{DR}_{\rm DEAD-POOL} (t)}$$
$$\eqalign{ \hbox{b. DR}_{\rm DEAD-POOL} (t)\cr =\hbox{weighted-avg}(\hbox{DR} _{\rm DEAD-POOL} (t-1), \cr \qquad\hbox{C}_{\rm DEAD-POOL} (t-1), \cr \qquad {\bf D}_{\bf {DEAD-POOL}}, \Sigma\hbox{ Input}_{\rm DEAD-POOL} (t))}$$
$$\eqalign{ \hbox{c. weighted-avg}(\hbox{rate}_{1}, \hbox{mass}_{1}, \hbox{rate}_{2}, \hbox{mass}_{2})\cr \qquad=(\hbox{rate}_{1}^* \hbox{mass}_{1} + \hbox{rate}_{2}^* \hbox{mass}_{2}) / (\hbox{mass}_{1} + \hbox{mass}_{2})}$$

The input decay rate of SW or HW is used for snag and log pools:

$${\bf D}_{{\bf POOL-SNAGS}}={\bf D}_{{\bf POOL-LOGS}}={\bf D}_{{\bf DEAD-POOL}}$$
(18)

The non-bole dead pools and the log pools transfer C to the stable pools:

$$\eqalign{ \Sigma\hbox{TR}_{\rm DEAD-POOL}(t)\cr \quad=\hbox{C}_{\rm DEAD-POOL}(t-1)^* {\bf TR}_{\rm DEAD-POOL}}.$$
(19)

Stable Pools

Stable pools receive C from corresponding dead pools:

$$\Sigma\hbox{Input}_{{\rm ST-FOL}} (t)=\Sigma\hbox{ TR} _{ {\rm DEAD-FOL}} (t)$$
(20)
$$\eqalign{\Sigma\hbox{ Input}_{{\rm ST-WOOD}} (t)= \Sigma\hbox{ TR}_{{\rm SW-LOGS}} (t)\cr + \Sigma\hbox{ TR}_{{\rm HW-LOGS}} (t)\cr + \Sigma\hbox{ TR}_{{\rm DEAD-BR}} (t)}$$
(21)
$$\eqalign{\Sigma\hbox{ Input}_{{\rm ST-SOIL}} (t)= \Sigma\hbox{ TR} _{ {\rm DEAD-CR}} (t) \cr + \Sigma\hbox{ TR}_{{\rm DEAD-FR}} (t)}$$
(22)

and they lose C via decomposition:

$$\Sigma\hbox{ Loss}_{\rm ST-POOL} (t)=\hbox{C}_{\rm ST-POOL}(t-1)^* {\bf D}_{{\bf ST-POOL}}$$
(23)

Appendix B

Pools are adjusted for disturbance after the annual calculations (Appendix A).

Harvest

Harvest events are catastrophic:

$$\hbox{C}_{\rm LIVE-POOL} (t_{{\rm POST-HARVEST}})=0$$
(1)

Live non-bole pools transfer C to dead pools:

$$\eqalign{ \hbox{C}_{\rm DEAD-POOL} (t_{{\rm POST-HARVEST}})\cr \quad=\hbox{C}_{\rm DEAD-POOL} (t) + \hbox{CUT}\_\hbox{TR}_{\rm POOL} (t)}$$
(2)
$$\hbox{a. CUT}\_\hbox{TR}\_{\rm POOL} (t)=\hbox{C}_{\rm POOL} (t).$$

A user-specified portion of bole C is taken off site:

$$\eqalign{ \hbox{CUT}\_\!\_\hbox{TR}_{\rm BOLE-POOL} (t)\cr \quad=\hbox{C} _{\rm BOLE-POOL} (t) - \hbox{HARVEST}\_\hbox{TR}_{\rm BOLE-POOL} (t)}$$
(3)
$$\eqalign{ \hbox{a. HARVEST}\_\hbox{TR}_{\rm BOLE-POOL} (t)\cr \quad = \hbox{C}_{\rm BOLE-POOL} (t)^*\%{\bf taken}.}$$

The portion remaining is transferred into the log pools:

$$\eqalign{ \hbox{C}_{{\rm SW-LOGS}} (t_{{\rm POST-HARVEST}})\cr \quad = \hbox{C}_{{\rm SW-LOGS}} (t) + \hbox{CUT}\_\hbox{TR}_{\rm SW} (t)}$$
(4)
$$\eqalign{ \hbox{C}_{{\rm HW-LOGS}} (t_{{\rm POST-HARVEST}})\cr \quad = \hbox{C}_{{\rm HW-LOGS}} (t) + \hbox{CUT}\_\hbox{TR}_{\rm HW} (t)\cr \qquad+ \hbox{CUT}\_\hbox{TR}_{\rm HR} (t)}$$
(5)

Fire

If there is no harvest before the fire, then:

$$\hbox{C}_{\rm POOL} (t_{{\rm PRE-FIRE}})=\hbox{C}_{\rm POOL} (t)$$
(6)

With harvest:

$$\hbox{C}_{\rm POOL} (t_{{\rm PRE-FIRE}})=\hbox{C}_{\rm POOL} (t_{{\rm POST-HARVEST}}).$$
(7)

Fire events are catastrophic:

$$\hbox{C}_{\rm LIVE-POOL} (t_{\rm POST-FIRE})=0$$
(8)

Live pools transfer C to dead pools depending on fire intensity (low, moderate, or high).

$$\eqalign{ \hbox{BURN}\_\hbox{TR}_{\rm LIVE-POOL} (t)\cr =\hbox{C}_{\rm LIVE-POOL} (t_{{\rm PRE-FIRE}})^* {\bf \%transfer}_{{\bf fire intensity}}}$$
(9)

The remaining amount is combusted:

$$\eqalign{ \hbox{BURN}\_\hbox{LOSS}_{\rm LIVE-POOL} (t)\cr \quad=\hbox{C}_{\rm LIVE-POOL} (t_{{\rm PRE-FIRE}})\cr \qquad- \hbox{BURN}\_\hbox{TR}_{\rm LIVE-POOL} (t)}$$
(10)

The amount of dead and stable pool C that remains is:

$$\eqalign{ \hbox{BURN}\_\hbox{LOSS}_{\rm POOL} (t)\cr \quad=\hbox{C}_{\rm POOL} (t_{{\rm PRE-FIRE}})^*\cr \qquad\quad (100\% - {\bf \%remaining}_{{\bf fire\ intensity}}).}$$
(11)

Non-bole dead C is adjusted for the burn loss and transfer from the live pool:

$$\eqalign{ \hbox{C}_{\rm DEAD-POOL} (t_{{\rm POST-FIRE}})\cr \quad=\hbox{C}_{\rm DEAD-POOL} (t_{{\rm PRE-FIRE}})\cr \qquad- \hbox{BURN}\_\hbox{LOSS}_{\rm DEAD-POOL} (t)\cr \qquad+ \hbox{BURN}\_\hbox{TR}_{\rm LIVE-POOL} (t).}$$
(12)

Transfers from live pools are added to dead bole pools:

$$\eqalign{ \hbox{C}_{{\rm SW-SNAGS}} (t_{{\rm POST-FIRE}})\cr \quad=\hbox{C}_{{\rm SW-SNAGS}} (t_{{\rm PRE-FIRE}})\cr \qquad- \hbox{BURN}\_\hbox{LOSS}_{{\rm SW-SNAGS}} (t)\cr \qquad + \hbox{BURN}\_\hbox{TR}_{{\rm SW-SNAGS}} (t)}$$
(13)
$$ \eqalign{ \hbox{C}_{{\rm HW-SNAGS}} (t_{{\rm POST-FIRE}})\cr \quad = \hbox{C}_{{\rm HW-SNAGS}} (t_{{\rm PRE-FIRE}})\cr \qquad - \hbox{BURN}\_\hbox{LOSS}_{{\rm HW-SNAGS}} (t)\cr \qquad+ \hbox{BURN}\_\hbox{TR}_{{\rm HW-SNAGS}} (t) + \hbox{BURN}\_\hbox{TR}_{{\rm HR}} (t)}$$
(14)
$$\eqalign{ \hbox{C}_{{\rm SW-LOGS}} (t_{{\rm POST-FIRE}})\cr \quad =\hbox{C}_{{\rm SW-LOGS}} (t_{{\rm PRE-FIRE}})\cr \qquad - \hbox{BURN}\_\hbox{LOSS}_{{\rm SW-LOGS}} (t)\cr \qquad+ \hbox{BURN}\_\hbox{TR}_{{\rm SW-LOGS}} (t)}$$
(15)
$$\eqalign{ \hbox{C}_{{\rm HW-LOGS}} (t_{{\rm POST-FIRE}})\cr \quad =\hbox{C}_{{\rm HW-LOGS}} (t_{{\rm PRE-FIRE}})\cr \qquad- \hbox{BURN}\_\hbox{LOSS}_{{\rm HW-LOGS}} (t)\cr \qquad+ \hbox{BURN}\_\hbox{TR}_{{\rm HW-LOGS}} (t) + \hbox{BURN}\_\hbox{TR}_{{\rm HR}}(t).}$$
(16)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smithwick, E.A.H., Harmon, M.E. & Domingo, J.B. Changing Temporal Patterns of Forest Carbon Stores and Net Ecosystem Carbon Balance: the Stand to Landscape Transformation. Landscape Ecol 22, 77–94 (2007). https://doi.org/10.1007/s10980-006-9006-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-006-9006-1

Keywords

Navigation