Skip to main content

Advertisement

Log in

The impact of habitat fragmentation on the ecology of xenarthrans (Mammalia) in the Brazilian Cerrado

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

The impact of deforestation and fragmentation upon ecologically important and poorly known groups is currently an important issue for conservation biology. Herein we describe xenathran communities across the Brazilian Cerrado and study the effects of habitat fragmentation on occupancy and activity patterns on these assemblages. Our hypothesis was that larger and specialized species would be more ecologically sensitive, and likely to exhibit shifts in their activity patterns in more deforested areas as a way of dealing with the myriad of effects involved in the fragmentation process. The study was conducted by camera trapping in ten Cerrado sites. Five species were analyzed: Priodontes maximus, Euphractus sexcinctus, Dasypus novemcintus (Order Cingulata), Tamandua tetradactyla and Myrmecophaga tridactyla (Order Pilosa). Fragmentation was quantified by landscape metrics, calculated on scales that matched the species’ home ranges. Occupancy and detection probability analyses were conducted to test for shifts in occupancy under different fragmentation conditions. A mixed-effects model analysis was conducted to test for shifts in species’ frequency of records related to time of day, controlling for spatial autocorrelation by means of eigenvector-based spatial filters for the models’ residuals. There were no changes in activity pattern between more and less fragmented areas, so that our behavioural plasticity hypothesis was not corroborated for this group. The lack of changes in the patterns could be explained by a species’ time-lag response, or by the lack of a wide enough fragmentation gradient in our study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ab’Saber AN (1983) O domínio dos Cerrados: introdução ao conhecimento. Rev Serv Púb 111:41–55

    Google Scholar 

  • Anacleto TCS (2007) Food Habits of Four Armadillo Species in the Cerrado Area, Mato Grosso, Brazil. Zool Stud 46:529–537

    Google Scholar 

  • Anacleto TCS, Marinho-Filho J (2001) Hábito alimentar do tatu canastra (Xenarthra, Dasypodidae) em uma área de Cerrado do Brasil Central. Rev Bras Zool 18:681–688

    Article  Google Scholar 

  • Andrén H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71:355–366

    Article  Google Scholar 

  • Bennington CC, Thayne WV (1994) Use and misuse of mixed model analysis of variance in ecological studies. Ecology 75:717–722

    Article  Google Scholar 

  • Beyer HL (2004) Hawth’s analysis tools for ArcGIS. http://www.spatialecology.com/htools. Accessed February 2010

  • Bierregaard RO Jr, Laurance WF, Sites JW et al (1997) Key priorities for the study of fragmented tropical ecosystems. In: Laurance WF, Bierregaard RO Jr (eds) Tropical forest remnants: ecology, management and conservation of fragmented communities. University of Chicago Press, Chicago, pp 515–525

    Google Scholar 

  • Boulinier T, Nichols JD, Sauer JR et al (1998) Estimating species richness: the importance of heterogeneity in species detectability. Ecology 79:1018–1028

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Carbone C, Christie S, Conforti K et al (2001) The use of photographic rates to estimate densities of tigers and other cryptic mammals. Anim Conserv 4:75–79

    Article  Google Scholar 

  • Carbone C, Christie S, Conforti K et al (2002) The use of photographic rates to estimate densities of cryptic mammals: response to Jennelle et al. Anim Conserv 5:121–123

    Article  Google Scholar 

  • Chiarello AG (1999) Effects of fragmentation of the Atlantic forest on mammal communities on south-eastern Brazil. Biol Conserv 89:71–82

    Article  Google Scholar 

  • Crooks KR (2002) Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv Biol 16:488–502

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM (2005) Modelling geographical patterns in species richness using eigenvector-based spatial filters. Global Ecol Biogeogr 14:177–185

    Article  Google Scholar 

  • Eisenberg JF, Redford KH (1999) Mammals of the neotropics, vol 3. The University of Chicago Press, Chicago

    Google Scholar 

  • Eisenberg JF, Thorington RW Jr (1973) A preliminary analysis of a neotropical mammal fauna. Biotropica 5:150–161

    Article  Google Scholar 

  • Eiten G (1972) The Cerrado vegetation of Brazil. Bot Rev 38:201–341

    Article  Google Scholar 

  • Encarnação C (1986) Contribuição à biologia dos tatus (Dasypodidae, Xenarthra) da Serra da Canastra, Minas Gerais. Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro

  • ESRI (2009) ArcGIS 9.3.1—Geographical information system. Environment System Research Institute Inc., Readlands, California

  • Estrada A, Juan-Solano S, Martínez TO et al (1999) Feeding and general activity-patterns of a howler monkey (Alouatta palliata) troop living in a forest fragment at Los Tuxtlas, Mexico. Am J Primatol 48:167–183

    Article  PubMed  CAS  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Syst 34:487–515

    Article  Google Scholar 

  • Garcia-Chiarello A (1993) Activity pattern of the brown howler monkey Alouatta fusca, [Geoffroy 1812] in a forest fragment of southeastern Brazil. Primates 34:289–293

    Article  Google Scholar 

  • Gardner TA, Barlow J, Chazdon R et al (2009) Prospects for tropical forest biodiversity in a human-modified world. Ecol Lett 12:561–582

    Article  PubMed  Google Scholar 

  • Harmsen BJ, Foster RJ, Silver S et al (2010) Differential use of trails by forest mammals and the implications for camera-trap studies: a case study from Belize. Biotropica 42:126–133

    Article  Google Scholar 

  • Henle K, Davis KF, Kleyer M et al (2004) Predictors of species sensitivity to fragmentation. Biodiversity Conserv 13:207–251

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hines JE (2006) PRESENCE 3.1. Software to estimate patch occupancy and related parameters. USGS-PWRC. Available at http://www.mbr-pwrc.usgs.gov/software/presence.html. Accessed August 2011

  • IBAMA (Brazilian Environmental Agency) (2009) Plano de Ação para Prevenção e Controle do Desmatamento e das Queimadas no Cerrado, Brasília, Brasil. Available at http://siscom.ibama.gov.br/monitorabiomas/Cerrado. Accessed December 2009

  • IBGE (Brazilian Institute of Geography and Statistics) (2004) Mapa de Biomas do Brasil Escala 1:5000000. Available at http://www.ibge.gov.br/home/presidencia/noticias/21052004biomas.shtm. Accessed September 2009

  • Jennelle CS, Runge MC, MacKenzie DI (2002) The use of photographic rates to estimate densities of tigers and other cryptic mammals: a comment on misleading conclusions. Anim Conserv 5:119–120

    Article  Google Scholar 

  • Jepsen JU, Topping CJ (2004) Modelling roe deer (Capreolus capreolus) in a gradient of forest fragmentation: behavioural plasticity and choice of cover. Can J Zool 82:1528–1541

    Article  Google Scholar 

  • Juarez KM, Marinho-Filho J (2002) Diet, habitat use, and home ranges of sympatric canids in central Brazil. J Mamm 83:925–933

    Article  Google Scholar 

  • Karanth KU, Nichols JD (1998) Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79:2852–2862

    Article  Google Scholar 

  • Karanth KU, Chundawat RS, Nichols JD et al (2004) Estimation of tiger densities in the tropical dry forests of Panna, Central India, using photographic capture–recapture sampling. Anim Conserv 7:285–290

    Article  Google Scholar 

  • Lovejoy TE, Bierregaard Jr. BO, Rylands AB et al (1986) Edge and other effects of isolation on Amazon forest fragments. Soulé ME (ed) Conservation biology. The science of scarcity and diversity. Sinauer Associates, Sunderland, pp 257–285

  • Machado ABM, Drummond GM, Paglia AP (2008) Livro Vermelho da fauna brasileira ameaçada de extinção, vol 2. Fundação Biodiversitas, Belo Horizonte, Brazil

    Google Scholar 

  • MacKenzie DI, Nichols JD, Hines JE et al (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84:2200–2207

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Royle JA et al (2006) Occupancy estimation and modeling. Elsevier, Burlington

    Google Scholar 

  • McNab BK (1985) Energetics, population biology and distribution of Xenarthrans, living and extinct. In: Montgomery GG (ed) The evolution and ecology of armadillos, sloths and vermilinguas. Smithsonian Institution Press, Washington, DC, pp 219–232

    Google Scholar 

  • Medri IM, Mourão GM, Harada AY (2003) Dieta de tamanduá-bandeira (Myrmecophaga tridactyla) no Pantanal da Nhecolândia, Brasil. Edentata 5:29–34

    Google Scholar 

  • Meritt DA Jr (1985) Naked-tail armadillos Cabassous sp. In: Montgomery GG (ed) The evolution and ecology of armadillos, sloths and vermilinguas. Smithsonian Institution Press, Washington, DC, pp 389–391

    Google Scholar 

  • Metzger JP, Martensen AC, Dixo M et al (2009) Time-lag in biological responses to landscape changes in a highly dynamic Atlantic forest region. Biol Conserv 142:1166–1177

    Article  Google Scholar 

  • Miranda GHB (2004) Ecologia e conservação do tamanduá-bandeira (Myrmecophaga tridactyla, Linnaeus, 1758) no Parque Nacional das Emas. Dissertation, Universidade de Brasília

  • Mittermeier RA, Robles-Gil P, Hoffmann M et al (2004) Hotspots revisited. CEMEX, Mexico

    Google Scholar 

  • Montgomery GG (ed) (1985a) The evolution and ecology of armadillos, sloths and vermilinguas. Smithsonian Institution Press, Washington, DC, pp 219–232

  • Montgomery GG (1985b) Movements, foraging and food habits of the four extant species of neotropical vermilinguas (Mammalia:Myrmecophagidae). In: Montgomery GG (ed) The evolution and ecology of armadillos, sloths and vermilinguas. Smithsonian Institution Press, Washington, DC, pp 365–377

    Google Scholar 

  • Norris D, Michalski F, Peres CA (2010) Habitat patch size modulates terrestrial mammal activity patterns in Amazonian forest fragments. J Mamm 91:551–560

    Article  Google Scholar 

  • O’Brien TG, Kinnaird MF, Wibisono HT (2003) Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim Conserv 6:131–139

    Article  Google Scholar 

  • Onderdonk DA, Chapman CA (2000) Coping with forest fragmentation: the primates of Kibale National Park, Uganda. Int J Primatol 21:587–611

    Article  Google Scholar 

  • Pardini R, Souza SM, Braga-Neto R et al (2005) The role of forest structure, fragment size and corridors in maintaining small mammal abundance and diversity in an Atlantic forest landscape. Biol Conserv 124:253–266

    Article  Google Scholar 

  • Pinheiro J, Bates D (2000) Mixed-effects models in S and S-plus. Springer, New York

    Book  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S et al (2011) nlme: linear and nonlinear mixed effects models, R package version 3.1-10. http://cran.r-project.org/web/packages/nlme/index.html. Accessed December 2009

  • Pires AS, Lira PK, Fernandez FAS et al (2002) Frequency of movements of small mammals among Atlantic Coastal Forest fragments in Brazil. Biol Conserv 108:229–237

    Article  Google Scholar 

  • R Development Core Team (2009) R: a language and environmental for statistical computing. R Foundation for Statistical Computing, Vienna. http://cranr-project.org. Accessed December 2009

  • Rangel TF, Diniz-Filho JAF, Bini LM (2010) SAM: a comprehensive application for spatial analysis in macroecology (version 4). Ecography 33:46–50

    Article  Google Scholar 

  • Redford KH (1985) Food habits of armadillos (Xenarthra:Dasypodidae). In: Montgomery GG (ed) The evolution and ecology of armadillos, sloths and vermilinguas. Smithsonian Institution Press, Washington, DC, pp 429–437

    Google Scholar 

  • Rempel R (2006) Patch Analyst 3.0. Centre for Northern Forest Ecosystem Research, Lakehead University Campus, Ontario

  • Silveira L, Jácomo ATA, Furtado MM et al (2009) Ecology of the Giant Armadillo (Priodontes maximus) in the Grasslands of Central Brazil. Edentata 8–10:25–34

    Article  Google Scholar 

  • Silver S (2004) Assessing jaguar abundance using remotely triggered cameras. Wildlife Conservation Society, New York

    Google Scholar 

  • Simberloff D (1998) Flagships, umbrellas and keystones: is single-species management passé in the landscape era? Biol Conserv 83:247–257

    Article  Google Scholar 

  • Swihart RK, Gehring TM, Kolozsvary MB et al (2003) Responses of ‘resistant’ vertebrates to habitat loss and fragmentation: the importance of niche breadth and range boundaries. Divers Distrib 9:1–18

    Article  Google Scholar 

  • Tews J, Brose U, Grimm V et al (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92

    Article  Google Scholar 

  • Tilman D, May RM, Lehman CL et al (1994) Habitat destruction and extinction debt. Nature 371:65–66

    Article  Google Scholar 

  • Trolle M (2003) Mammal survey in the southeastern Pantanal, Brazil. Biodiversity Conserv 12:823–836

    Article  Google Scholar 

  • Uezu A, Metzger JP, Vielliard JME (2005) Effects of structural and functional connectivity and patch size on the abundance of seven Atlantic Forest bird species. Biol Conserv 123:507–519

    Article  Google Scholar 

  • Wetzel RM (1985a) The identification and distribution of recent Xenarthra (=Edentata). In: Montgomery GG (ed) The evolution and ecology of armadillos, sloths and vermilinguas. Smithsonian Institution Press, Washington, DC, pp 5–21

    Google Scholar 

  • Wetzel RM (1985b) Taxonomy and distribution of armadillos, Dasypodidae. In: Montgomery GG (ed) The evolution and ecology of armadillos, sloths and vermilinguas. Smithsonian Institution Press, Washington, DC, pp 23–46

    Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

    Article  Google Scholar 

  • Zuur AG, Ieno EN, Walker NJ et al (2009) Mixed effects models and extensions in ecology with R. Springer Science + Business Media, New York

    Book  Google Scholar 

Download references

Acknowledgments

We would like to give thanks for the Earthwatch Institute, the Monsanto Foundation, the Memphis Zoo and the CI Brazil for their financial support; the landowners for giving permission to work at their properties; the IBAMA for granting research licenses for working in protected areas; and the many volunteers and trainees who helped in the field. This study also received a technical support from the Núcleo Regional do DF da Rede ComCerrado/MCT. We would also like to thank the Graduate Program in Ecology of the University of Brasilia and the Brazilian National Council of Scientific and Technological Development (CNPq), for the scholarship awarded to Babi Zimbres and research grant to J. Marinho-Filho. FAPDF also provided financial support to JMF and RBM (Pronex 193000563-2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Zimbres.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimbres, B., Furtado, M.M., Jácomo, A.T.A. et al. The impact of habitat fragmentation on the ecology of xenarthrans (Mammalia) in the Brazilian Cerrado. Landscape Ecol 28, 259–269 (2013). https://doi.org/10.1007/s10980-012-9832-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-012-9832-2

Keywords

Navigation