Skip to main content

Advertisement

Log in

Scale-dependent, contrasting effects of habitat fragmentation on host-natural enemy trophic interactions

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Habitat fragmentation can have contrasting effects on species and their interactions within communities, changing community structure and function. Parasitoids and pathogens are key natural enemies in invertebrate communities, but their responses to fragmentation have not been explored within the same community.

Objectives

This study aimed to explore the scale-dependent effects of habitat fragmentation on the population density of a lepidopteran host and particularly its trophic interactions with a specialist parasitoid and virus.

Methods

Host density and host larval-mortality from the parasitoid and the virus were measured in twelve isolated sites and thirteen connected sites. An index of habitat isolation was created based on the amount of suitable habitat surrounding sites at a range of spatial scales (0.1–5 km radii), and the direct and indirect effects of habitat isolation were analysed using generalised linear mixed effects models.

Results

Consistent with predictions, habitat isolation had direct negative effects on host density at the smallest and largest spatial scales, and indirect negative effects on host mortality from the virus at the largest scale, but in contrast to predictions it had direct positive effects on parasitism at small and medium scales.

Conclusions

Higher trophic level species may still display responses to habitat fragmentation contrary to predictions based on well supported theory and empirical evidence. The mechanisms underlying these responses may be elucidated by studying responses, contrary to expectations, shared by related species. Developing general predictions about the responses of host-pathogen interactions to fragmentation will require greater understanding of the system-specific mechanisms by which fragmentation can influence pathogen transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allan PBM (1979) Larval food plants. Watkins & Doncaster, London

    Google Scholar 

  • Allan BF, Keesing F, Ostfeld RS (2003) Effect of forest fragmentation on lyme disease risk. Conserv Biol 17(1):267–272

    Article  Google Scholar 

  • Anderson RM, May RM (1981) The population-dynamics of micro-parasites and their invertebrate hosts. Philos T Roy Soc B 291(1054):451–524

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B (2012) lme4: Linear mixed-effects models using S4 classes. http://cran.r-project.org/web/packages/lme4/

  • Begon M, Sait SM, Thompson DJ (1996) Predator-prey cycles with period shifts between two- and three-species systems. Nature 381(6580):311–315

    Article  CAS  Google Scholar 

  • Begon M, Sait SM, Thompson DJ (1999) Host-pathogen-parasitoid systems. In: Hawkins BA, Cornell HV (eds) Theoretical approaches to biological control. Cambridge University Press, Cambridge, pp 327–348

    Chapter  Google Scholar 

  • Bender DJ, Contreras TA, Fahrig L (1998) Habitat loss and population decline: a meta-analysis of the patch size effect. Ecology 79(2):517–533

    Article  Google Scholar 

  • Bjornstad ON, Falck W (2001) Nonparametric spatial covariance functions: estimation and testing. Environ Ecol Stat 8(1):53–70

    Article  Google Scholar 

  • Bonsall MB (2004) The impact of diseases and pathogens on insect population dynamics. Physiol Entomol 29(3):223–236

    Article  Google Scholar 

  • Boots M, Greenman J, Ross D, Norman R, Hails R, Sait S (2003) The population dynamical implications of covert infections in host-microparasite interactions. J Anim Ecol 72(6):1064–1072

    Article  Google Scholar 

  • Boots M, Hudson PJ, Sasaki A (2004) Large shifts in pathogen virulence relate to host population structure. Science 303(5659):842–844

    Article  PubMed  CAS  Google Scholar 

  • Boots M, Mealor M (2007) Local interactions select for lower pathogen infectivity. Science 315(5816):1284–1286

    Article  PubMed  CAS  Google Scholar 

  • Brownstein JS, Skelly DK, Holford TR, Fish D (2005) Forest fragmentation predicts local scale heterogeneity of Lyme disease risk. Oecologia 146(3):469–475

    Article  PubMed  Google Scholar 

  • Brückmann SV, Krauss J, van Achterberg C, Steffan-Dewenter I (2011) The impact of habitat fragmentation on trophic interactions of the monophagous butterfly Polyommatus coridon. J Insect Conserv 15(5):707–714

    Article  Google Scholar 

  • Burden JP, Griffiths CM, Cory JS, Smith P, Sait SM (2002) Vertical transmission of sublethal granulovirus infection in the Indian meal moth, Plodia interpunctella. Mol Ecol 11(3):547–555

    Article  PubMed  CAS  Google Scholar 

  • Burden JP, Nixon CP, Hodgkinson AE, Possee RD, Sait SM, King LA, Hails RS et al (2003) Covert infections as a mechanism for long-term persistence of baculoviruses. Ecol Lett 6(6):524–531

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Cagnolo L, Valladares G, Salvo A, Cabido M, Zak M (2009) Habitat fragmentation and species loss across three interacting trophic levels: effects of life-history and food-web traits. Conserv Biol 23(5):1167–1175

    Article  PubMed  Google Scholar 

  • Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C (2011) A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett 14(9):922–932

    Article  PubMed  Google Scholar 

  • Connor EF, Courtney AC, Yoder JM (2000) Individuals-area relationships: the relationship between animal population density and area. Ecology 81(3):734–748

    Google Scholar 

  • Cory JS, Myers JH (2003) The ecology and evolution of insect baculoviruses. Annu Rev Ecol Evol Syst 34:239–272

    Article  Google Scholar 

  • Cronin JT, Strong DR (1999) Dispersal-dependent oviposition and the aggregation of parasitism. Am Nat 154(1):23–36

    Article  Google Scholar 

  • Davies KF, Margules CR, Lawrence JF (2004) A synergistic effect puts rare, specialized species at greater risk of extinction. Ecology 85(1):265–271

    Article  Google Scholar 

  • Didham RK, Hammond PM, Lawton JH, Eggleton P, Stork NE (1998) Beetle species responses to tropical forest fragmentation. Ecol Monogr 68(3):295–323

    Article  Google Scholar 

  • Doak P (2000) The effects of plant dispersion and prey density on parasitism rates in a naturally patchy habitat. Oecologia 122(4):556–567

    Article  Google Scholar 

  • Elzinga JA, van Nouhuys S, van Leeuwen DJ, Biere A (2007) Distribution and colonisation ability of three parasitoids and their herbivorous host in a fragmented landscape. Basic Appl Ecol 8(1):75–88

    Article  Google Scholar 

  • ESRI (2011) ArcGIS Desktop. Release 10 edn. Environmental Systems Research Institute, Redlands, CA

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81(1):117–142

    Article  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol S 34:487–515

    Article  Google Scholar 

  • Gonzalez A, Lawton JH, Gilbert FS, Blackburn TM, Evans-Freke I (1998) Metapopulation dynamics, abundance, and distribution in a microecosystem. Science 281(5385):2045–2047

    Article  PubMed  CAS  Google Scholar 

  • Google (2011) Google Earth. 6.1.0.5001 edn., Mountain View, CA

  • Graham RI, Tyne WI, Possee RD, Sait SM, Hails RS (2004) Genetically variable nucleopolyhedroviruses isolated from spatially separate populations of the winter moth Operophtera brumata (Lepidoptera : Geometridae) in Orkney. J Invertebr Pathol 87(1):29–38

    Article  PubMed  Google Scholar 

  • Hambäck PA, Englund G (2005) Patch area, population density and the scaling of migration rates: the resource concentration hypothesis revisited. Ecol Lett 8(10):1057–1065

    Article  Google Scholar 

  • Hambäck PA, Summerville KS, Steffan-Dewenter I, Krauss J, Englund G, Crist TO (2007) Habitat specialization, body size, and family identity explain lepidopteran density-area relationships in a cross-continental comparison. Proc Natl Acad Sci USA 104(20):8368–8373

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanski I (1994) Patch-occupancy dynamics in fragmented landscapes. Trends Ecol Evol 9(4):131–135

    Article  PubMed  CAS  Google Scholar 

  • Hanski I, Thomas CD (1994) Metapopulation dynamics and conservation—a spatially explicit model applied to butterflies. Biol Conserv 68(2):167–180

    Article  Google Scholar 

  • Harold S (2009) Spatial ecology of an insect host-parasitoid-virus interaction: the winter moth (Operophtera brumata) and its natural enemies in Orkney. Ph.D. thesis, The University of Leeds

  • Hassell MP (2000) Host-parasitoid population dynamics. J Anim Ecol 69(4):543–566

    Article  Google Scholar 

  • Hawkins BA, Cornell HV, Hochberg ME (1997) Predators, parasitoids, and pathogens as mortality agents in phytophagous insect populations. Ecology 78(7):2145–2152

    Article  Google Scholar 

  • Haysom KA, Coulson JC (1998) The Lepidoptera fauna associated with Calluna vulgaris: effects of plant architecture on abundance and diversity. Ecol Entomol 23(4):377–385

    Article  Google Scholar 

  • Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev 80(3):489–513

    Article  PubMed  Google Scholar 

  • Holt RD, Lawton JH, Polis GA, Martinez ND (1999) Trophic rank and the species-area relationship. Ecology 80(5):1495–1504

    Google Scholar 

  • Kruess A, Tscharntke T (1994) Habitat fragmentation, species loss and biological-control. Science 264(5165):1581–1584

    Article  PubMed  CAS  Google Scholar 

  • Kruess A, Tscharntke T (2000) Species richness and parasitism in a fragmented landscape: experiments and field studies with insects on Vicia sepium. Oecologia 122(1):129–137

    Article  Google Scholar 

  • Lacey LA (2012) Manual of techniques in invertebrate pathology. Academic Press, Waltham

    Google Scholar 

  • Langlois JP, Fahrig L, Merriam G, Artsob H (2001) Landscape structure influences continental distribution of hantavirus in deer mice. Landscape Ecol 16(3):255–266

    Article  Google Scholar 

  • Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC, Sampaio E et al (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv Biol 16(3):605–618

    Article  Google Scholar 

  • Martinson HM, Fagan WF (2014) Trophic disruption: a meta-analysis of how habitat fragmentation affects resource consumption in terrestrial arthropod systems. Ecol Lett 17(9):1178–1189

    Article  PubMed  Google Scholar 

  • McCallum H (2008) Landscape structure, disturbance, and disease dynamics. In: Ostfeld RS, Keesing F, Eviner VT (eds) Infectious disease ecology: effects of ecosystems on disease and of disease on ecosystems. Princeton University Press, Princeton, pp 100–122

    Google Scholar 

  • McCallum H, Barlow N, Hone J (2001) How should pathogen transmission be modelled? Trends Ecol Evol 16(6):295–300

    Article  PubMed  Google Scholar 

  • Morris ON (1971) Effect of sunlight, ultraviolet and gamma radiations, and temperature on infectivity of a nuclear polyhedrosis virus. J Invertebr Pathol 18(2):292–294

    Article  PubMed  CAS  Google Scholar 

  • Morton RD, Rowland C, Wood C, Meek L, Marston C, Smith G, Wadsworth R, Simpson I (2011) Land Cover Map 2007 (Vector, GB). NERC/Centre for Ecology & Hydrology, p 112

  • Myers JH, Cory JS (2013) Population cycles in forest Lepidoptera revisited. Annu Rev Ecol Evol Syst 44(1):565–592

    Article  Google Scholar 

  • O’Brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41(5):673–690

    Article  Google Scholar 

  • Obermaier E, Heisswolf A, Poethke HJ, Randlkofer B, Meiners T (2008) Plant architecture and vegetation structure: two ways for insect herbivores to escape parasitism. Eur J Entomol 105(2):233–240

    Article  Google Scholar 

  • OS (2003) Land-form profile digital Terrain Model, 1: 10,000 Raster. Ordnance Survey, Southampton

    Google Scholar 

  • Ostfeld RS, Glass GE, Keesing F (2005) Spatial epidemiology: an emerging (or re-emerging) discipline. Trends Ecol Evol 20(6):328–336

    Article  PubMed  Google Scholar 

  • Park AW, Gubbins S, Gilligan CA (2001) Invasion and persistence of plant parasites in a spatially structured host population. Oikos 94(1):162–174

    Article  Google Scholar 

  • Park AW, Gubbins S, Gilligan CA (2002) Extinction times for closed epidemics: the effects of host spatial structure. Ecol Lett 5(6):747–755

    Article  Google Scholar 

  • R Development Core Team (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Raymond B, Hails RS (2007) Variation in plant resource quality and the transmission and fitness of the winter moth, Operophtera brumata nucleopolyhedrovirus. Biol Control 41(2):237–245

    Article  Google Scholar 

  • Renwick JAA, Chew FS (1994) Oviposition behaviour in Lepidoptera. Annu Rev Entomol 39:377–400

    Article  Google Scholar 

  • Roland J, Taylor PD (1997) Insect parasitoid species respond to forest structure at different spatial scales. Nature 386(6626):710–713

    Article  CAS  Google Scholar 

  • Roth D, Roland J, Roslin T (2006) Parasitoids on the loose—experimental lack of support of the parasitoid movement hypothesis. Oikos 115(2):277–285

    Article  Google Scholar 

  • Sait SM, Liu WC, Thompson DJ, Godfray HCJ, Begon M (2000) Invasion sequence affects predator-prey dynamics in a multi-species interaction. Nature 405(6785):448–450

    Article  PubMed  CAS  Google Scholar 

  • Schnitzler FR, Hartley S, Lester PJ (2011) Trophic-level responses differ at plant, plot, and fragment levels in urban native forest fragments: a hierarchical analysis. Ecol Entomol 36(2):241–250

    Article  Google Scholar 

  • Sekar S (2012) A meta-analysis of the traits affecting dispersal ability in butterflies: can wingspan be used as a proxy? J Anim Ecol 81(1):174–184

    Article  PubMed  Google Scholar 

  • Skaug H, Fournier D, Nielsen A, Magnusson A, Bolker B (2012) Generalized linear mixed models using AD model builder. http://glmmadmb.r-forge.r-project.org/

  • Steffan-Dewenter I, Tscharntke T (2000) Butterfly community structure in fragmented habitats. Ecol Lett 3(5):449–456

    Article  Google Scholar 

  • Tentelier C, Desouhant E, Fauvergue X (2006) Habitat assessment by parasitoids: mechanisms for patch use behavior. Behav Ecol 17(4):515–521

    Article  Google Scholar 

  • Tscharntke T, Brandl R (2004) Plant-insect interactions in fragmented landscapes. Annu Rev Entomol 49:405–430

    Article  PubMed  CAS  Google Scholar 

  • Valladares G, Salvo A, Cagnolo L (2006) Habitat fragmentation effects on trophic processes of insect-plant food webs. Conserv Biol 20(1):212–217

    Article  PubMed  Google Scholar 

  • van Nouhuys S (2005) Effects of habitat fragmentation at different trophic levels in insect communities. Ann Zool Fenn 42(4):433–447

    Google Scholar 

  • Vilaplana L, Wilson K, Redman EM, Cory JS (2010) Pathogen persistence in migratory insects: high levels of vertically-transmitted virus infection in field populations of the African armyworm. Evol Ecol 24(1):147–160

    Article  Google Scholar 

  • Winfree R, Dushoff J, Crone EE, Schultz CB, Budny RV, Williams NM, Kremen C et al (2005) Testing simple indices of habitat proximity. Am Nat 165(6):707–717

    Article  PubMed  Google Scholar 

  • Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, London

    Book  Google Scholar 

Download references

Acknowledgments

We would like to thank Robert Possee and Helen Hesketh for their help and support with lab work, and Elizabeth Elliott and Steven White for their help with field work, and two anonymous referees for their helpful comments. We would also like to thank Mark Shaw for his expertise in identifying the parasitoid, and for providing information on its biology. Finally, we would like to thank the RSPB and other land owners for access to their land. This study was supported by a NERC DTG studentship awarded to JPH (NE/J50001X/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph P. Hicks.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 60 kb)

Supplementary material 2 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hicks, J.P., Hails, R.S. & Sait, S.M. Scale-dependent, contrasting effects of habitat fragmentation on host-natural enemy trophic interactions. Landscape Ecol 30, 1371–1385 (2015). https://doi.org/10.1007/s10980-015-0192-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-015-0192-6

Keywords

Navigation