Skip to main content
Log in

Bounds on the covariate-time transformation for competing-risks survival analysis

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

A fundamental problem with the latent-time framework in competing risks is the lack of identifiability of the joint distribution. Given observed covariates along with assumptions as to the form of their effect, then identifiability may obtain. However it is difficult to check any assumptions about form since a more general model may lose identifiability. This paper considers a general framework for modelling the effect of covariates, with the single assumption that the copula dependency structure of the latent times is invariant to the covariates. This framework consists of a set of functions: the covariate-time transformations. The main result produces bounds on these functions, which are derived solely from the crude incidence functions. These bounds are a useful model checking tool when considering the covariate-time transformation resulting from any particular set of further assumptions. An example is given where the widely-used assumption of independent competing risks is checked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aalen OO (1978) Non-parametric inference for a family of counting processes. Ann Stat 6:701–726

    MATH  MathSciNet  Google Scholar 

  • Aalen OO (1980) A model for non-parametric regression analysis of counting processes. In: Klonechi W, Kozek A, Rosiński J (eds) Mathematical statistics and probability. Lecture Notes in Statistics, vol 2. New York, pp. 1–25

  • Abbring JH, Van Den Berg GJ (2003) The identifiability of the mixed proportional hazards competing risks model. J R Stat Soc, B 65:701–710

    Article  MATH  Google Scholar 

  • Andersen PK, Borgan Ø, Gill RD, Keiding N (1993) Statistical models based on counting processes. Springer, New York

    MATH  Google Scholar 

  • Bennet S (1983) Analysis of survival data by the proportional odds model. Stat Med 2:273–277

    Google Scholar 

  • Billingsley P (1995) Probability and measure, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  • Clayton DG (1978) A model for association in bivariate lifetables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65:141–151

    Article  MATH  MathSciNet  Google Scholar 

  • Cooke RM, Morales-Napoles O (2006) Competing risk and the Cox proportional hazard model. J Stat Plan Infer 136(5):1621–1627

    Article  MATH  MathSciNet  Google Scholar 

  • Cox DR (1959) The analysis of exponentially distributed life-times with two types of failure. J R Stat Soc B 21:411–421

    MATH  Google Scholar 

  • Cox DR (1972) Regression models and lifetables (with discussion). J R Stat Soc B 34:187–220

    MATH  Google Scholar 

  • Cox DR, Oakes D (1984) Analysis of survival data. Monographs on statistics and applied probability, vol 21, Chapman and Hall, London

  • Crowder M (1991) On the identifiability crisis in competing risks analysis. Scand J Stat 18:223–233

    MATH  MathSciNet  Google Scholar 

  • Crowder M (2001) Classical competing risks. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Heckman JJ, Honoré BE (1989) The identifiability of the competing risks model. Biometrika 76:325–330

    Article  MATH  MathSciNet  Google Scholar 

  • Hoel DG (1972) A representation of mortality data by competing risks. Biometrics 28:475–488

    Article  Google Scholar 

  • Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data. Wiley series in probability and statistics, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Kaplan EL, Meier P (1958) Non-parametric estimation from incomplete observations. J Am Stat Assoc 53:457–481

    Article  MATH  MathSciNet  Google Scholar 

  • Lancaster T (1979) Econometric models for the duration of unemployment. Econometrica 47:939–956

    Article  MATH  MathSciNet  Google Scholar 

  • Lin DY (1997) Non-parametric inference for cumulative incidence functions in competing risks studies. Stat Med 16:901–910

    Article  Google Scholar 

  • Nelsen RB (1998) An introduction to copulas, volume 139 of Lecture notes in statistics. Springer, New York

    Google Scholar 

  • Nelson W (1969) Hazard plotting for incomplete failure data. J Qual Technol 1:27–52

    Google Scholar 

  • Peterson AV (1976) Bounds for a joint distribution with fixed sub-distribution functions: application to competing risks. Proc Natl Acad Sci, USA 73:11–13

    Article  MATH  Google Scholar 

  • Tsiatis AA (1975) A nonidentifiability aspect of the problem of competing risks. Proc Natl Acad Sci, USA 72:20–22

    Article  MATH  MathSciNet  Google Scholar 

  • Vaupel JW, Manton KG, Stallard E (1979) The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16:439–454

    Google Scholar 

  • Zheng M, Klein JP (1995) Estimates of marginal survival for dependent competing risks based on an assumed copula. Biometrika 82:127–38

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. Bond.

Appendices

Appendices

A copula invariance

Given a multivariate survival function, S(t), its survival copula (Nelsen 1998, pp. 28–29) is a function \(C:[0,1]^k\mapsto [0,1]\) with the property that C(1,...,1,u,1,...,1) = u and that S(t) = C{S 1(t 1), ..., S k (t k )}, where S i (t i ) is the marginal survival function for T i .

If the effect of a covariate, Z, can be represented in the form

$$ S({\bf t}|z)=S\{\phi_{1}(t_{1},z), \ldots, \phi_{k}(t_{k},z)|Z=\mathcal{Z} \} $$

then it follows that \(\phi_{i}(t,z)=S_{i}^{-1}\{S_{i}(t|Z=z)|Z=\mathcal{Z}\}\). Hence if we denote C z to be the survival copula of the joint survival function conditional on Z = z, it follows that

$$ \begin{aligned} C_{z}\left[S_{1}(t_{1}|z), \ldots, S_{k}(t_{k}|z)\right]=& S\left[ \phi_{1}(t_{1},z), \ldots, \phi_{k}(t_{k},z)|Z={\mathcal Z} \right] \\ =& C_{\mathcal Z}\left[S_{1}\{\phi_{1}(t_{1},z)|{\mathcal Z}\}, \ldots, S_{k}\{\phi_{k}(t_{k},z)|{\mathcal Z}\}\right] \\ =& C_{\mathcal Z}\left[S_{1}\circ S_{1}^{-1}\{ S_{1}(t|z)|{\mathcal Z}\}, \ldots, S_{k}\circ S_{k}^{-1}\{ S_{k}(t|z)|{\mathcal Z}\}\right] \\ =& C_{\mathcal Z}\left[ S_{1}(t_{1}|z), \ldots, S_{k}(t_{k}|z)\right] \\ \Rightarrow C_{z}=&C_{\mathcal Z} \end{aligned} $$

Hence our assumption about the form of the CTT implies that the survival copula is invariant to the value of the covariate. Given that the copula describes the dependency structure of a multivariate distribution (Nelsen 1998, chapter 5) this gives a useful insight into the implications of assumption (4).

B Lemmas

Lemma B.1.

For all doubly indexed sets  A ij ,

$$ \bigcup_{i} \bigcap_{j} A_{ij} \subseteq \bigcap_{j} \bigcup_{i} A_{ij}. $$

Proof

Consider

$$ \begin{aligned} \left\{\bigcup_{i} \bigcap_{j} A_{ij} \right\} \cap \left\{ \bigcap_{j} \bigcup_{i} A_{ij}\right\}^{c} =& \left\{ \bigcup_{i} \bigcap_{j} A_{ij} \right\} \cap \left\{ \bigcup_{j} \bigcap_{i} A_{ij}^{c} \right\} \\ =& \bigcup_{i,j} \left\{\bigcap_{m} A_{im} \cap \bigcap_{n} A_{nj}^{c} \right\} \end{aligned} $$

Since \(A_{im} \cap A_{nj}^{c}=\emptyset\) for m = j, n = i

$$=\bigcup_{i,j} \emptyset = \emptyset$$

Lemma B.2.

For any subset, \(\mathcal{C}\), of the indices, i, over which the random variables  T i  are defined, define  \(A= \bigcup_{i \in \mathcal{C}} \bigcap_{j \neq i} \{ T_{i} < T_{j} \}\), and, \(B= \bigcup_{i \in \mathcal{C}} \bigcap_{j \not\in \mathcal{C}} \{ T_{i} < T_{j} \}\), then  A = B.

Proof

Since

$$ \bigcap_{j \neq i} \{T_{i}< T_{j}\} \subseteq \bigcap_{j \not\in \mathcal{C}}\{T_{i} < T_{j} \}, $$

we have that \(A \subseteq B\).

Consider

$$ B^{c}= \bigcap_{i \in \mathcal{C}} \bigcup_{j \not\in\mathcal{C}} \{ T_{i}> T_{j}\}. $$

Swapping the indices i and j, and using lemma B.1 we have,

$$ B^{c}=\bigcap_{j \in \mathcal{C}} \bigcup_{i \not\in\mathcal{C}} \{ T_{i}< T_{j}\} \supseteq \bigcup_{i \not\in \mathcal{C}} \bigcap_{j \in \mathcal{C}}\{ T_{i} < T_{j} \}. $$

Clearly \(\bigcap_{j \in \mathcal{C}} \{T_{i}< T_{j}\} \supseteq \bigcap_{j \neq i} \{ T_{i}< T_{j}\}\), hence

$$ B^{c} \supseteq\bigcup_{i\not\in \mathcal{C}} \bigcap_{j \neq i} \{ T_{i}< T_{j}\} = A^{c}, $$

where the last equality arises from the fact that \(\bigcap_{j\neq i}\{ T_{i}< T_{j}\}\) partitions Ω, the sample space.

So we have \(A\subseteq B\) and \(A^{c}\subseteq B^{c}\) hence A = B. □

Lemma B.3.

For any subset, \(\mathcal{C}\), of the indices, i, over which the random variables  T i  are defined, define  \(A= \bigcup_{i \in \mathcal{C}} \left( \{T_{i}< t\} \cap \bigcap_{j \neq i} \{ T_{i} < T_{j} \}\right)\), and, \(B= \left(\bigcup_{i \in \mathcal{C} } \{T_{i}< t\} \right) \cap \left( \bigcup_{k \in \mathcal{C}} \bigcap_{j \neq k} \{ T_{k} < T_{j} \} \right)\) then  A = B.

Proof

Define X i  =  {T i  < t} and \(Y_{i}= \bigcap_{j \neq i} \{T_{i}< T_{j}\}\), then

$$ A = \bigcup_{i \in \mathcal{C}} X_{i} \cap Y_{i} $$

and

$$ B= \bigcup_{i, k \in \mathcal{C}} X_{i} \cap Y_{k}. $$

By inspection AB.

Since, \(\{ T_{k} < T_{i}\} \cap \{T_{i} < t\} \Rightarrow \{T_{k}< t\}\), for a fixed \(k\in\mathcal{C}\), and for all i

$$ \begin{array}{lll} Y_{k} \cap X_{i} & \subset & Y_{k} \cap X_{k} \\ \Rightarrow Y_{k} \cap \bigcup\limits_{i \in \mathcal{C} } X_{i}& \subset & Y_{k} \cap X_{k} \\ \Rightarrow \bigcup\limits_{k \in \mathcal{C}} \left( Y_{k} \cap \bigcup\limits_{i \in \mathcal{C}} X_{i} \right)&\subset& \bigcup\limits_{k\in\mathcal{C}} Y_{k} \cap X_{k} \\ \Rightarrow B & \subset & A \end{array} $$

Since AB and BA, then A = B. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bond, S.J., Shaw, J.E. Bounds on the covariate-time transformation for competing-risks survival analysis. Lifetime Data Anal 12, 285–303 (2006). https://doi.org/10.1007/s10985-006-9015-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-006-9015-z

Keywords

Navigation