Skip to main content

Advertisement

Log in

Bounds for tail probabilities of martingales using skewness and kurtosis

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

Let M n = X 1 + ⋯ + X n be a sum of independent random variables such that X k ⩽ 1, \(\mathbb{E}X_k = 0\) and EX 2 k = σ 2 k for all k. Hoeffding [15, Theorem 3] proved that

$$\mathbb{P}\{ M_n \geqslant nt\} \leqslant H^n (t,p),H(t,p) = (1 + {{qt} \mathord{\left/ {\vphantom {{qt} p}} \right. \kern-\nulldelimiterspace} p})^{ - p - qt} (1 - t)^{qt - q} $$

with

$$q = \frac{1}{{1 + \sigma ^2 }},p = 1 - q,\sigma ^2 = \frac{{\sigma _1^2 + \cdots + \sigma _n^2 }}{n},0 < t < 1.$$

. Bentkus [5] improved Hoeffding’s inequalities using binomial tails as upper bounds. Let \(\gamma _k = \mathbb{E}{{X_k^3 } \mathord{\left/ {\vphantom {{X_k^3 } {\sigma _k^3 }}} \right. \kern-\nulldelimiterspace} {\sigma _k^3 }}\) and \(\kappa _k = \mathbb{E}{{X_k^4 } \mathord{\left/ {\vphantom {{X_k^4 } {\sigma _k^4 }}} \right. \kern-\nulldelimiterspace} {\sigma _k^4 }}\) stand for the skewness and kurtosis of X k . In this paper we prove (improved) counterparts of the Hoeffding inequality replacing σ 2 by certain functions of γ 1, ..., γ n (respectively ϰ1, ..., ϰ1). Our bounds extend to a general setting where X k are martingale differences, and they can combine the knowledge of skewness and/or kurtosis and/or variances of X k . Up to factors bounded by e 2/2 the bounds are final. All our results are new since no inequalities incorporating skewness or kurtosis control are known so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Bentkus, An inequality for large deviation probabilities of sums of bounded i.i.d. random variables, Lith. Math. J., 41(2):112–119, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  2. V. Bentkus, An inequality for tail probabilities of martingales with bounded differences, Lith. Math. J., 42(3):255–261, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  3. V. Bentkus, A remark on the inequalities of Bernstein, Prokhorov, Bennett, Hoeffding, and Talagrand, Lith. Math. J., 42(3):262–269, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  4. V. Bentkus, An inequality for tail probabilities of martingales with differences bounded from one side, J. Theor. Probab., 16(1):161–173, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  5. V. Bentkus, On Hoeffding’s inequalities, Ann. Probab., 158(2):1650–1673, 2004.

    Article  MathSciNet  Google Scholar 

  6. V. Bentkus, On measure concentration for separately Lipschitz functions in product spaces, Israel. J. Math., 158:1–17, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  7. V. Bentkus, G.D.C. Geuze, M.G.F. Pinenberg, and M. van Zuijlen, Unimodality: The symmetric case, Report No. 0612 of Dept. of Math. Radboud University Nijmegen, pp. 1–12, 2006.

  8. V. Bentkus, G.D.C. Geuze, and M. van Zuijlen, Optimal Hoeffding-like inequalities under a symmetry assumption, Statistics, 40(2):159–164, 2006.

    MATH  MathSciNet  Google Scholar 

  9. V. Bentkus, G.D.C. Geuze, and M. van Zuijlen, Unimodality: The general case, Report No. 0608 of Dept. of Math. Radboud University Nijmegen, pp. 1–24, 2006.

  10. V. Bentkus, G.D.C. Geuze, and M. van Zuijlen, Unimodality: The linear case, Report No. 0607 of Dept. of Math. Radboud University Nijmegen, pp. 1–11, 2006.

  11. V. Bentkus, N. Kalosha, and M. van Zuijlen, On domination of tail probabilities of (super)martingales: explicit bounds, Lith. Math. J., 46(1):3–54, 2006.

    Article  Google Scholar 

  12. V. Bentkus, N. Kalosha, and M. van Zuijlen, Confidence bounds for the mean in nonparametric multisample problems, Stat. Neerl., 61(2):209–231, 2007.

    Article  MATH  Google Scholar 

  13. V. Bentkus and M. van Zuijlen, On conservative confidence intervals, Lith. Math. J., 43(2):141–160, 2003.

    Article  MATH  Google Scholar 

  14. A. Godbole and P. Hitczenko, Beyond the method of bounded differences, Microsurveys in Discrete Probability, 41:43–58, 1998. (Princeton, NJ, 1997), Dimacs Ser. Discrete Math. Theor. Comput. Sci., Am. Math. Soc., Providence, RI.

    Google Scholar 

  15. W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Am. Stat. Assoc., 58:13–30, 1963.

    Article  MATH  MathSciNet  Google Scholar 

  16. N. Laib, Exponential-type inequalities for martingale difference sequences. application to nonparametric regression estimation, Commun. Stat. Theory Methods, 28:1565–1576, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  17. C. McDiarmid, On the method of bounded differences, in Surveys in Combinatorics, Norwich, London Math. Soc. Lecture Note Ser., 1989, pp. 148–188.

  18. F. Perron, Extremal properties of sums of Bernoulli random variables, Stat. Probab. Lett., 62: 345–354, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  19. I. Pinelis, Optimal tail comparison based on comparison of moments, in High Dimensional Probability, Progr. Probab., 43, Birkhauser, Basel, Oberwolfach, 1998, pp. 297–314.

    Google Scholar 

  20. I. Pinelis, Fractional sums and integrals of r-concave tails and applications to comparison probability inequalities, in Advances in Stochastic Inequalities, Contemp. Math., 234, Am. Math. Soc., Providence, RI, Atlanta, GA, 1999, pp. 149–168.

    Google Scholar 

  21. I. Pinelis, On normal domination of (super)martingales, Electron. J. Prabab., 11(39): 1049–1070, 2006.

    MATH  MathSciNet  Google Scholar 

  22. I. Pinelis, Inequalities for sums of asymmetric random variables, with applications, Probab. Theory Relat. Fields, 139(3–4):605–635, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  23. I. Pinelis, Toward the best constant factor for the rademacher-gaussian tail comparison, ESAIM Probab. Stat., 11:412–426, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Talagrand, The missing factor in hoeffding’s inequalities, Ann. Inst. H. Poincaré Probab. Stat., 31(4):689–702, 1995.

    MATH  MathSciNet  Google Scholar 

  25. S.A. van de Geer, On hoeffding’s inequalities for dependent random variables, in Empirical Process Techniques for Dependent Data, Contemp. Math., 234, Am. Math. Soc., Providence, RI, Birkhauser Boston, Boston, MA, 2002, pp. 161–169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Bentkus.

Additional information

The research was partially supported by the Lithuanian State Science and Studies Foundation, grant No T-15/07.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bentkus, V., Juškevičius, T. Bounds for tail probabilities of martingales using skewness and kurtosis. Lith Math J 48, 30–37 (2008). https://doi.org/10.1007/s10986-008-0003-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-008-0003-8

Keywords

Navigation