Skip to main content

Advertisement

Log in

Synthesis of Phosphopeptides in the Fmoc Mode

  • Special Issue: Peptides in Oral and Dental Research
  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

The synthesis of phosphopeptides has played a major role in the characterization of protein phosphorylation/dephosphorylation. The current range of synthesis protocols available provides a variety of possible routes by which to approach specific synthetic challenges, and this review article discusses these methods for the preparation of phosphopeptides and provides synthesis notes for each method. Phosphopeptide synthesis is achieved by either introduction of the phosphate group via post-synthetic (‘global’) phosphorylation of a resin-bound peptide or the incorporation of a pre-phosphorylated derivative into the growing peptide chain. Protocols and synthesis notes are provided for the synthesis of phosphoramidites, phosphotyrosyl, -seryl and -threonyl peptides and their mimetics, including thiophosphopeptides. The aim of this review was to provide a synthesis reference guide for Fmoc-based synthesis of both singly and multiply phosphorylated peptides, with particular emphasis given to the most successful and generally applicable methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 1
Fig. 2
Fig. 3
Scheme 6
Scheme 7
Fig. 4
Scheme 8
Scheme 9
Fig. 5
Scheme 10

Similar content being viewed by others

References

  • Bannwarth W, Kitas EA (1992) Synthesis of multi-O4-phospho-L-tyrosine-containing peptides. Helv Chim Acta 75:707–714

    Article  CAS  Google Scholar 

  • Bannwarth W, Kueng E, Vorherr T (1996) Global phosphorylation of peptides containing oxidation-sensitive amino acids. Bioorg Med Chem Lett 6:2141–2146

    Article  CAS  Google Scholar 

  • Berkowitz DB, Eggen M, Shen Q, Shoemaker RK (1996) Ready access to fluorinated phosphonate mimics of secondary phosphates. Synthesis of the (a,a-difluoroalkyl)phosphonate analogs of L-phosphoserine, L-phosphoallothreonine, and L-phosphothreonine. J Org Chem 61:4666–4675

    Article  PubMed  CAS  Google Scholar 

  • Burke TR Jr, Lee K (2003) Phosphotyrosyl Mimetics in the Development of Signal Transduction Inhibitors. Acc Chem Res 36:426–433

    Article  PubMed  CAS  Google Scholar 

  • Burke TR Jr, Smyth MS, Nomizu M, Otaka A, Roller PR (1993) Preparation of fluoro- and hydroxy-4-(phosphonomethyl)-D,L-phenylalanine suitably protected for solid-phase synthesis of peptides containing hydrolytically stable analogs of O-phosphotyrosine. J Org Chem 58:1336–1340

    Article  CAS  Google Scholar 

  • Burke TR Jr, Kole HK, Roller PP (1994a) Potent inhibition of insulin receptor dephosphorylation by a hexamer peptide containing the phosphotyrosyl mimetic F2Pmp. Biochem Biophys Res Commun 204:129–134

    Article  PubMed  CAS  Google Scholar 

  • Burke TR Jr, Smyth MS, Otaka A, Nomizu M, Roller PP, Wolf G, Case R, Shoelson SE (1994b) Nonhydrolyzable phosphotyrosyl mimetics for the preparation of phosphatase-resistant SH2 domain inhibitors. Biochemistry 33:6490–6494

    Article  PubMed  CAS  Google Scholar 

  • Chao H-G, Bernatowicz MS, Reiss PD, Matsueda GR (1994) Synthesis and application of bis-silylethyl-derived phosphate-protected Fmoc-phosphotyrosine derivatives for peptide synthesis. J Org Chem 59:6687–6691

    Article  CAS  Google Scholar 

  • Chao H-G, Leiting B, Reiss PD, Burkhardt AL, Klimas CE, Bolen JB, Matsueda GR (1995) Synthesis and application of Fmoc-O-[Bis(dimethylamino)phosphono]tyrosine, a versatile protected phosphotyrosine equivalent. J Org Chem 60:7710–7711

    Article  CAS  Google Scholar 

  • Chen L, Wu L, Otaka A, Smyth MS, Roller PP, Burke TR Jr, Den Hertog J, Zhang Z-Y (1995) Why is phosphonodifluoromethyl phenylalanine a more potent inhibitory moiety than phosphonomethyl phenylalanine toward protein-tyrosine phosphatases? Biochem Biophys Res Commun 216:976–984

    Article  PubMed  CAS  Google Scholar 

  • Cho H, Ramer SE, Itoh M, Winkler DG, Kitas E, Bannwarth W, Burn P, Saito H, Walsh CT (1991) Purification and characterization of a soluble catalytic fragment of the human transmembrane leukocyte antigen related (LAR) protein tyrosine phosphatase from an E. coli expression system. Biochemistry 30:6210–6216

    Article  PubMed  CAS  Google Scholar 

  • Cohen P (2001) The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture. Eur J Biochem 268:5001–5010

    Article  PubMed  CAS  Google Scholar 

  • Coleman DR, Ren Z, Mandal PK, Cameron AG, Dyer GA, Muranjan S, Campbell M, Chen X, Mcmurray JS (2005) Investigation of the binding determinants of phosphopeptides targeted to the Src homology 2 domain of the signal transducer and activator of transcription 3. Development of a high-affinity peptide inhibitor. J Med Chem 48:6661–6670

    Article  PubMed  CAS  Google Scholar 

  • Cross KJ, Huq NL, Palamara JE, Perich JW, Reynolds EC (2005a) Physicochemical characterization of casein phosphopeptide-amorphous calcium phosphate nanocomplexes. J Biol Chem 280:15362–15369

    Article  PubMed  CAS  Google Scholar 

  • Cross KJ, Huq NL, Reynolds EC (2005b) Protein dynamics of bovine dentin phosphophoryn. J Pept Res 66:59–67

    Article  PubMed  CAS  Google Scholar 

  • De Bont HBA, Van Boom JH, Liskamp RMJ (1990) Automatic synthesis of phosphopeptides by phosphorylation on the solid phase. Tetrahedron Lett 31:2497–2500

    Article  Google Scholar 

  • De Bont HBA, Van Boom JH, Liskamp RMJ (1991) Automatic synthesis of phosphopeptides on the solid phase. Pept. 1990, Proc Eur Pept Symp 21st, pp. 443–445

  • De Bont DBA, Moree WJ, Van Boom JH, Liskamp RMJ (1993) Solid-phase synthesis of O-phosphorothioylserine- and -threonine-containing peptides as well as of O-phosphoserine- and -threonine-containing peptides. J Org Chem 58:1309–1317

    Article  Google Scholar 

  • Delange RJ, Kemp RG, Riley WD, Cooper RA, Krebs EG (1968) Activation of skeletal muscle phosphorylase kinase by adenosine triphosphate and adenosine 3′,5′-monophosphate. J Biol Chem 243:2200–2208

    PubMed  CAS  Google Scholar 

  • Domchek SM, Auger KR, Chatterjee S, Burke TR Jr, Shoelson SE (1992) Inhibition of SH2 domain/phosphoprotein association by a nonhydrolyzable phosphonopeptide. Biochemistry 31:9865–9870

    Article  PubMed  CAS  Google Scholar 

  • Fischer EH, Krebs EG (1955) Conversion of phosphorylase b to phosphorylase a in muscle extracts. J Biol Chem 216:121–132

    PubMed  CAS  Google Scholar 

  • Flick MB, Sapi E, Perrotta PL, Maher MG, Halaban R, Carter D, Kacinski BM (1997) Recognition of activated CSF-1 receptor in breast carcinomas by a tyrosine 723 phosphospecific antibody. Oncogene 14:2553–2561

    Article  PubMed  CAS  Google Scholar 

  • Fretz H (1997) Na-Fmoc-O,O-(dimethylphospho)-L-tyrosine fluoride: a convenient building block for the solid-phase synthesis of phosphotyrosyl peptides. Lett Pept Sci 4:171–176

    CAS  Google Scholar 

  • Fujii N, Otaka A, Sugiyama N, Hatano M, Yajima H (1987) Studies on peptides. CLV. Evaluation of trimethylsilyl bromide as a hard-acid deprotecting reagent in peptide synthesis. Chem Pharm Bull 35:3880–3883

    PubMed  CAS  Google Scholar 

  • Garcia-Echeverria C (1995) Potential pyrophosphate formation upon use of Na-Fmoc-Tyr(PO3H2)-OH in solid-phase peptide synthesis. Lett Pept Sci 2:93–98

    Article  CAS  Google Scholar 

  • Garcia-Echeverria C (1996) Evaluation of coupling conditions for the incorporation of Na-Fmoc-Tyr(PO3H2)-OH in solid-phase peptide synthesis. Lett Pept Sci 2:369–373

    Article  CAS  Google Scholar 

  • Gerster M, Bleicher K, Bayer E (1996) Comparison of several sulfurizing reagents for synthesis of phosphorothioate oligonucleotides on different supports. Innovation and Perspectives in solid phase synthesis & combinatorial libraries: peptides, proteins and nucleic acids–small molecule organic chemical diversity. Collected papers, international symposium, 4th, Edinburgh, 12–16 September 1995, pp. 377–380

  • Gordeev MF, Patel DV, Barker PL, Gordon EM (1994) N-a-Fmoc-4-phosphono(difluoromethyl)-L-phenylalanine: a new O-phosphotyrosine isosteric building block suitable for direct incorporation into peptides. Tetrahedron Lett 35:7585–7588

    Article  CAS  Google Scholar 

  • Green OM (1994) A rapid dealkylation of phosphonate diester for the preparation of 4-phosphonomethylphenylalanine-containing peptides. Tetrahedron Lett 35:8081–8084

    Article  CAS  Google Scholar 

  • Hamilton R, Shute RE, Travers J, Walker B, Walker BJ (1994) A convenient synthesis of phosphonate isosteres of serine phosphates. Tetrahedron Lett 35:3597–3600

    Article  CAS  Google Scholar 

  • Handa BK, Hobbs CJ (1998) An efficient and convenient procedure for the synthesis of N(alpha)-Fmoc-O-monobenzyl phosphonotyrosine. J Pept Sci 4:138–141

    Article  PubMed  CAS  Google Scholar 

  • Herbst JJ, Andrews GC, Contillo LG, Singleton DH, Genereux PE, Gibbs EM, Lienhard GE (1995) Effect of the activation of phosphatidylinositol 3-kinase by a thiophosphotyrosine peptide on glucose transport in 3T3-L1 adipocytes. J Biol Chem 270:26000–26005

    Article  PubMed  CAS  Google Scholar 

  • Higashimoto Y, Saito SI, Tong X-H, Hong A, Sakaguchi K, Appella E, Anderson CW (2000) Human p53 is phosphorylated on serines 6 and 9 in response to DNA damage-inducing agents. J Biol Chem 275:23199–23203

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann R, Wachs WO, Berger RG, Kalbitzer HR, Waidelich D, Bayer E, Wagner-Redeker W, Zeppezauer M (1995) Chemical phosphorylation of the peptides GGXA (X = S, T, Y): an evaluation of different chemical approaches. Int J Pept Protein Res 45:26–34

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann R, Lee VM, Leight S, Varga I, Otvos L Jr (1997) Unique Alzheimer’s disease paired helical filament specific epitopes involve double phosphorylation at specific sites. Biochemistry 36:8114–8124

    Article  PubMed  CAS  Google Scholar 

  • Huq NL, Cross KJ, Talbo GH, Riley PF, Loganathan A, Crossley MA, Perich JW, Reynolds EC (2000) N-terminal sequence analysis of bovine dentin phosphophoryn after conversion of phosphoseryl to S-propylcysteinyl residues. J Dent Res 79:1914–1919

    Article  PubMed  CAS  Google Scholar 

  • Imhof D, Nothmann D, Zoda MS, Hampel K, Wegert J, Boehmer FD, Reissmann S (2005) Synthesis of linear and cyclic phosphopeptides as ligands for the N-terminal SH2-domain of protein tyrosine phosphatase SHP-1. J Pept Sci 11:390–400

    Article  PubMed  CAS  Google Scholar 

  • Johnson T, Packman LC, Hyde CB, Owen D, Quibell M (1996) Backbone protection and its application to the synthesis of a difficult phosphopeptide sequence. J Chem Soc Perkin Trans 1:719–728

    Article  Google Scholar 

  • Johnson TM, Perich JW, Bjorge JD, Fujita DJ, Cheng H-C (1997) Common and differential recognition of structural features in synthetic peptides by the catalytic domain and the Src-homology 2 (SH2) domain of pp60c-src. J Pept Res 50:365–371

    Article  PubMed  CAS  Google Scholar 

  • Kitas EA, Perich JW, Wade JD, Johns RB, Tregear GW (1989) Fmoc-polyamide solid phase synthesis of an o-phosphotyrosine-containing tridecapeptide. Tetrahedron Lett 30:6229–6232

    Article  CAS  Google Scholar 

  • Kitas EA, Knorr R, Trzeciak A, Bannwarth W (1991a) Alternative strategies for the Fmoc solid-phase synthesis of O4-phospho-L-tyrosine-containing peptides. Helv Chim Acta 74:1314–1328

    Article  CAS  Google Scholar 

  • Kitas EA, Wade JD, Johns RB, Perich JW, Tregear GW (1991b) Preparation and use of Na-fluorenylmethoxycarbonyl-O-dibenzylphosphono-L-tyrosine in continuous flow solid phase peptide synthesis. J Chem Soc Chem Commun 338–339

  • Kitas E, Kueng E, Bannwarth W (1994) Chemical synthesis of O-thiophosphotyrosyl peptides. Int J Pept Protein Res 43:146–153

    PubMed  CAS  Google Scholar 

  • Krebs EG, Love DS, Bratvold GE, Trayser KA, Meyer WL, Fischer EH (1964) Purification and properties of rabbit skeletal muscle phosphorylase B kinase. Biochemistry 3:1022–1033

    Article  PubMed  CAS  Google Scholar 

  • Lacombe JM, Andriamanampisoa F, Pavia AA (1990) Solid-phase synthesis of peptides containing phosphoserine using phosphate tert.-butyl protecting group. Int J Pept Protein Res 36:275–280

    Article  PubMed  CAS  Google Scholar 

  • Levene PA, Alsberg C (1901) Paranucleic acid. Z Physiol Chem 31:543

    CAS  Google Scholar 

  • Luo S-Z, Li Y-M, Chen Z-Z, Abe H, Cui L-P, Nakanishi H, Qin X-R, Zhao Y-F (2003) Synthesis and matrix assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry study of phosphopeptide. Lett Pept Sci 10:57–62

    CAS  Google Scholar 

  • Meutermans WDF, Alewood PF (1996) A simple and effective procedure for the synthesis of the ‘difficult’ phosphotyrosine-containing peptide Stat 91 (695–708). Tetrahedron Lett 37:4765–4766

    Article  CAS  Google Scholar 

  • Mostafavi H, Austermann S, Forssmann WG, Adermann K (1996) Synthesis of phospho-urodilatin by combination of global phosphorylation with the segment coupling approach. Int J Pept Protein Res 48:200–207

    Article  PubMed  CAS  Google Scholar 

  • Otaka A, Burke TR Jr, Smyth MS, Nomizu M, Roller PP (1993) Deprotection and cleavage methods for protected peptide resins containing 4-[(diethylphosphono)difluoromethyl]-DL-phenylalanine residues. Tetrahedron Lett 34:7039–7042

    Article  CAS  Google Scholar 

  • Ottinger EA, Shekels LL, Bernlohr DA, Barany G (1993) Synthesis of phosphotyrosine-containing peptides and their use as substrates for protein tyrosine phosphatases. Biochemistry 32:4354–4361

    Article  PubMed  CAS  Google Scholar 

  • Otvos L Jr, Elekes I, Lee VM (1989) Solid-phase synthesis of phosphopeptides. Int J Pept Protein Res 34:129–133

    Article  PubMed  CAS  Google Scholar 

  • Perich JW (1998) Synthesis of phosphopeptides via global phosphorylation on the solid phase: resolution of H-phosphonate formation. Lett Pept Sci 5:49–55

    CAS  Google Scholar 

  • Perich, JW, Johns RB (1988) Di-tert-butyl N,N-diethylphosphoramidite. A new phosphitylating agent for the efficient phosphorylation of alcohols. Synthesis 142–144

  • Perich, JW, Johns RB (1991) Synthesis of casein-related peptides and phosphopeptides. X. A modified method for the synthesis of Ser(P)-containing peptides through 4-bromobenzyl phosphate protection. Aust J Chem 44:503

    Google Scholar 

  • Perich JW, Reynolds EC (1991a) The facile one-pot synthesis of Na-(9-fluorenylmethoxycarbonyl)-O-(O′,O″-dialkylphosphoro)-L-tyrosines using dialkyl N,N-diethylphosphoramidites. Synlett 577–578

  • Perich JW, Reynolds EC (1991b) Fmoc/solid-phase synthesis of Tyr(P)-containing peptides through t-butyl phosphate protection. Int J Pept Protein Res 37:572–575

    Article  PubMed  CAS  Google Scholar 

  • Perich JW, Nguyen Dung L, Reynolds EC (1991) The facile synthesis of Ala-Glu-Tyr(P)-Ser-Ala by global di-tert-butyl N,N-diethylphosphoramidite phosphite-triester phosphorylation of a resin-bound peptide. Tetrahedron Lett 32:4033–4034

    Article  CAS  Google Scholar 

  • Perich JW, Liepa I, Chaffee AL, Johns RB (1994) Fast atom bombardment mass spectra of some Na-(t-butoxycarbonyl)-O-(diorganylphosphono)-L-serines and O-(diorganylphosphono)seryl-containing dipeptides and tripeptides. Aust J Chem 47:229–245

    Article  CAS  Google Scholar 

  • Perich JW, Liepa I, Chaffee AL, Johns RB (1996a) The analysis of multiple O-phosphoseryl-containing peptides by fast-atom-bombardment mass spectrometry. Lett Pept Sci 2:345–351

    Article  CAS  Google Scholar 

  • Perich JW, Meggio F, Pinna LA (1996b) Solid phase synthesis of pp60src-related phosphopeptides via ‘Global’ phosphorylation and their use as substrates for enzymic phosphorylation by casein kinase-2. Bioorg Med Chem 4:143–150

    Article  PubMed  CAS  Google Scholar 

  • Perich JW, Ede NJ, Eagle S, Bray AM (1999) Synthesis of phosphopeptides by the Multipin method: evaluation of coupling methods for the incorporation of Fmoc-Tyr(PO3Bzl,H)-OH, Fmoc-Ser(PO3Bzl,H)-OH and Fmoc-Thr(PO3Bzl,H)-OH. Lett Pept Sci 6:91–97

    CAS  Google Scholar 

  • Poteur L, Trifilieff E (1996) Global phosphorylation at Ser16 of the 32-residue cytoplasmic domain of phospholamban: comparison of di-t-butyl- and dibenzyl-N,N-diisopropylphosphoramidites. Lett Pept Sci 2:271–276

    Article  CAS  Google Scholar 

  • Qabar MN, Urban J, Kahn M (1997) A facile solution and solid phase synthesis of phosphotyrosine mimetic L-4-[diethylphosphono(difluoromethyl)]phenylalanine (F2Pmp(EtO)2) derivatives. Tetrahedron Lett 53:11171–11178

    CAS  Google Scholar 

  • Sakaguchi K, Saito SI, Higashimoto Y, Roy S, Anderson CW, Appella E (2000) Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding. J Biol Chem 275:9278–9283

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto H, Kodama H, Higashimoto Y, Kondo M, Lewis MS, Anderson CW, Appella E, Sakaguchi K (1996) Chemical synthesis of phosphorylated peptides of the carboxy-terminal domain of human p53 by a segment condensation method. Int J Pept Protein Res 48:429–442

    Article  PubMed  CAS  Google Scholar 

  • Sawabe A, Filla SA, Masamune S (1992) Use of 2-(trimethylsilyl)ethyl as a protecting group in phosphate monoester synthesis. Tetrahedron Lett 33:7685–7686

    Article  CAS  Google Scholar 

  • Shapiro G, Buechler D, Ojea V, Pombo-Villar E, Ruiz M, Weber HP (1993) Synthesis of both D- and L-Fmoc-Abu[PO(OCH2CH:CH2)2]-OH for solid phase phosphonopeptide synthesis. Tetrahedron Lett 34:6255–6258

    Article  CAS  Google Scholar 

  • Shapiro G, Buechler D, Enz A, Pombo-Villar E (1994) Solid-phase synthesis of phosphonoserine isosteres of phosphoserine peptides. Tetrahedron Lett 35:1173–1176

    Article  CAS  Google Scholar 

  • Shen K, Keng Y-F, Wu L, Guo X-L, Lawrence DS, Zhang Z-Y (2001) Acquisition of a specific and potent PTP1B inhibitor from a novel combinatorial library and screening procedure. J Biol Chem 276:47311–47319

    Article  PubMed  CAS  Google Scholar 

  • Solas D, Hale RL, Patel DV (1996) An efficient synthesis of N-a-Fmoc-4-(Phosphonodifluoromethyl)-L-phenylalanine. J Org Chem 61:1537–1539

    Article  CAS  Google Scholar 

  • Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG, King F, Roberts T, Ratnofsky S, Lechleider RJ et al (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72:767–778

    Article  PubMed  CAS  Google Scholar 

  • Songyang Z, Shoelson SE, Mcglade J, Olivier P, Pawson T, Bustelo XR, Barbacid M, Sabe H, Hanafusa H, Yi T et al (1994) Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol Cell Biol 14:2777–2785

    PubMed  CAS  Google Scholar 

  • Staerkaer G, Jakobsen MH, Olsen CE, Holm A (1991) Solid phase peptide synthesis of selectively phosphorylated peptides. Tetrahedron Lett 32:5389–5392

    Article  CAS  Google Scholar 

  • Sun J-P, Fedorov Alexander A, Lee S-Y, Guo X-L, Shen K, Lawrence David S, Almo Steven C, Zhang Z-Y (2003) Crystal structure of PTP1B complexed with a potent and selective bidentate inhibitor. J Biol Chem 278:12406–12414

    Article  PubMed  CAS  Google Scholar 

  • Tamura K (2001) Synthesis of a phosphorylated peptide by a solid-phase method. Seirigaku Gijutsu Kenkyukai Hokoku 23:32–35

    CAS  Google Scholar 

  • Tegge W (1994) Solid-phase synthesis of phosphorylated and thiophosphorylated peptides related to an EGFR sequence. Int J Pept Protein Res 43:448–453

    Article  PubMed  CAS  Google Scholar 

  • Tholey A, Reed J, Lehmann WD (1999) Electrospray tandem mass spectrometric studies of phosphopeptides and phosphopeptide analogs. J Mass Spectrom 34:117–123

    Article  PubMed  CAS  Google Scholar 

  • Valerio RM, Bray AM, Maeji NJ, Morgan PO, Perich JW (1995) Preparation of O-phosphotyrosine-containing peptides by Fmoc solid-phase synthesis: evaluation of several Fmoc-Tyr(PO3R2)-OH derivatives. Lett Pept Sci 2:33–40

    Article  CAS  Google Scholar 

  • Vorherr T, Bannwarth W (1995) Phospho-serine and phospho-threonine building blocks for the synthesis of phosphorylated peptides by the Fmoc solid phase strategy. Bioorg Med Chem 5:2661–2664

    Article  CAS  Google Scholar 

  • Wade JD, Perich JW, Mcleish MJ, Otvos L Jr, Tregear GW (1995) Synthesis and conformational analysis of an O-phosphotyrosine-containing a-helical peptide. Lett Pept Sci 2:71–76

    Article  CAS  Google Scholar 

  • Wakamiya T, Saruta K, Yasuoka J, Kusumoto S (1994) An efficient procedure for solid-phase synthesis of phosphopeptides by the Fmoc strategy. Chem Lett 1099–1102

  • Wakamiya T, Nishida T, Togashi R, Saruta K, Yasuoka J-I, Kusumoto S (1996) Preparations of Na-Fmoc-O-[(benzyloxy)hydroxyphosphinyl] b-hydroxy a-amino acid derivatives. Bull Chem Soc Jpn 69:465–468

    Article  CAS  Google Scholar 

  • Wakamiya T, Togashi R, Nishida T, Saruta K, Yasuoka J-I, Kusumoto S, Aimoto S, Kumagaye YK, Nakajima K, Nagata K (1997) Synthetic study of phosphopeptides related to heat shock protein HSP27. Bioorg Med Chem 5:135–145

    Article  PubMed  CAS  Google Scholar 

  • Waksman G, Shoelson SE, Pant N, Cowburn D, Kuriyan J (1993) Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms. Cell 72:779–790

    Article  PubMed  CAS  Google Scholar 

  • Walsh DA, Perkins JP, Krebs EG (1968) An adenosine 3′,5′-monophosphate-dependant protein kinase from rabbit skeletal muscle. J Biol Chem 243:3763–3765

    PubMed  CAS  Google Scholar 

  • White, P, Beythien J (1996) Preparation of phosphoserine, threonine and tyrosine containing peptides by the Fmoc methodology using pre-formed phosphoamino acid building blocks. Innovation and perspectives in solid phase synthesis & combinatorial libraries: peptides, proteins and nucleic acids – small molecule organic chemical diversity. Collected papers, international symposium, 4th, Edinburgh, 12–16 September 1995, pp. 557–560

  • Wrobel J, Dietrich A (1993) Preparation of L-(phosphonodifluoromethyl)phenylalanine derivatives as non-hydrolyzable mimetics of O-phosphotyrosine. Tetrahedron Lett 34:3543–3546

    Article  CAS  Google Scholar 

  • Xu Q, Ottinger EA, Sole NA, Barany G (1997) Detection and minimization of H-phosphonate side reaction during phosphopeptide synthesis by a post-assembly global phosphorylation strategy. Lett Pept Sci 3:333–342

    Article  CAS  Google Scholar 

  • Zhao Z (1996) Thiophosphate derivatives as inhibitors of tyrosine phosphatases. Biochem Biophys Res Commun 218:480–484

    Article  PubMed  CAS  Google Scholar 

  • Zheng W, Zhang Z, Ganguly S, Weller JL, Klein DC, Cole PA (2003) Cellular stabilization of the melatonin rhythm enzyme induced by nonhydrolyzable phosphonate incorporation. Nat Struct Biol 10:1054–1057

    Article  PubMed  CAS  Google Scholar 

  • Zheng W, Schwarzer D, Lebeau A, Weller JL, Klein DC, Cole PA (2005) Cellular stability of serotonin N-Acetyltransferase conferred by phosphonodifluoromethylene alanine (Pfa) substitution for Ser-205. J Biol Chem 280:10462–10467

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Health and Medical Research Council grant 251707 and The CRC for Oral Health Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric C. Reynolds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attard, T.J., O’Brien-Simpson, N. & Reynolds, E.C. Synthesis of Phosphopeptides in the Fmoc Mode. Int J Pept Res Ther 13, 447–468 (2007). https://doi.org/10.1007/s10989-007-9107-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-007-9107-y

Keywords

Navigation