Skip to main content

Advertisement

Log in

Bactericidal Potency and Extended Serum Life of Stereo-Chemically Engineered Peptides Against Mycobacterium

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Tuberculosis is one of the leading causes of death, with an annual mortality rate of 2 million. The present treatment regimen for Mycobacterium species is strenuous, extending up to 12 months. Even then, rise of antibiotic resistance has limited the prognosis, with increased instances of multidrug resistant (MDR–TB) and extremely drug resistant (XDR–TB) cases reported. Peptide based antibiotics can be an effective solution due to their low toxicity, biocompatibility and predictable metabolism, but has not been employed due to their short plasma half life. In this brief communication, we demonstrate the bactericidal potency of cationic amphipathic peptides as an effective bactericidal agent against Mycobacterium smegmatis. Potency of stereo-engineered LDLD or DLDL peptides have been retained their potency, while their poly L variants rapidly lost their activity, when the experiment was repeated in human serum. To establish this as a design strategy, we further verified the results by repeating the experiment in a gram negative bacteria E. coli. One of the designed peptides were showing a minimum inhibitory concentration (MIC) value as low as 3.13 µM, suggesting the possibility of future development as a therapeutic peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albada HB, Prochnow P, Bobersky S, Bandow JE, Metzler-Nolte N (2014) Highly active antibacterial ferrocenoylated or ruthenocenoylated Arg-Trp peptides can be discovered by an l-to-d substitution scan. Chem Sci 5:4453–4459

    Article  CAS  Google Scholar 

  • Anderson L (2005) Candidate-based proteomics in the search for biomarkers of cardiovascular disease. J Physiol 563:23–60

    Article  CAS  PubMed  Google Scholar 

  • Arakha M, Borah SM, Saleem M, Jha AN, Jha S (2016) Interfacial assembly at silver nanoparticle enhances the antibacterial efficacy of nisin. Free Radic Biol Med 101:434–445

    Article  CAS  PubMed  Google Scholar 

  • Bals R, Goldman MJ, Wilson JM (1998) Mouse β-defensin 1 is a salt-sensitive antimicrobial peptide present in epithelia of the lung and urogenital tract. Infect Immun 66:1225–1232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beg S, Gaur P, Mishra S (2017) New drugs and vaccines for tuberculosis. Recent Pat Anti-Infect Drug Discov. https://doi.org/10.2174/1574891X12666171006105921

    Article  Google Scholar 

  • Billmeyer FW (1971) Textbook of polymer science. Wiley, New York

    Google Scholar 

  • Brannon JR, Thomassin J-L, Gruenheid S, Le Moual H (2015) Antimicrobial Peptide conformation as a structural determinant of omptin protease specificity. J Bacteriol 197:3583–3591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkhart BM, Gassman RM, Langs DA, Pangborn WA, Duax WL, Pletnev V (1999) Gramicidin D conformation, dynamics and membrane ion transport. Biopolymers 51:129–144

    Article  CAS  PubMed  Google Scholar 

  • Carranza-Rosales P et al (2017) Modeling tuberculosis pathogenesis through ex vivo lung tissue infection. Tuberculosis 107:126–132

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary N, Nagaraj R (2011) Impact on the replacement of Phe by Trp in a short fragment of Aβ amyloid peptide on the formation of fibrils. J Pep Sci 17:115–123

    Article  CAS  Google Scholar 

  • Chung GA, Aktar Z, Jackson S, Duncan K (1995) High-throughput screen for detecting antimycobacterial agents. Antimicrob Agents Chemother 39:2235–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di L (2015) Strategic approaches to optimizing peptide ADME properties. AAPS J 17:134–143

    Article  CAS  PubMed  Google Scholar 

  • Dosler S, Karaaslan E, Alev Gerceker A (2016) Antibacterial and anti-biofilm activities of melittin and colistin, alone and in combination with antibiotics against Gram-negative bacteria. J Chemother 28:95–103

    Article  CAS  PubMed  Google Scholar 

  • Durani S (2008) Protein design with l- and d-α-amino acid structures as the alphabet. Acc Chem Res 41:1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Estrella J et al (2011) A novel in vitro human macrophage model to study the persistence of Mycobacterium tuberculosis using vitamin D3 and retinoic acid activated THP-1 macrophages. Front Microbiol 2:1–16

    Article  CAS  Google Scholar 

  • Falzon D, Schünemann HJ, Harausz E, González-Angulo L, Lienhardt C, Jaramillo E, Weyer K (2017) World Health Organization treatment guidelines for drug-resistant tuberculosis, 2016 update. Eur Respir J 49:1602308

    Article  PubMed  PubMed Central  Google Scholar 

  • Fjell CD, Hiss JA, Hancock REW, Schneider G (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11:37–51

    Article  CAS  Google Scholar 

  • Fofana MO, Shrestha S, Knight GM, Cohen T, White RG, Cobelens F, Dowdy DW (2017) A multistrain mathematical model to investigate the role of pyrazinamide in the emergence of extensively drug-resistant tuberculosis. Antimicrob Agents Chemother 61:e00498–e00416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128

    Article  CAS  PubMed  Google Scholar 

  • Ghadiri MR, Granja JR, Milligan RA, McRee DE, Khazanovich N (1993) Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366:324–327

    Article  CAS  PubMed  Google Scholar 

  • Greene CH, Power MH (1931) The distribution of electrolytes between serum and the in vivo dialysate. J Biol Chem 91:183–202

    CAS  Google Scholar 

  • Gutsmann T (2016) Interaction between antimicrobial peptides and mycobacteria. Biochim Biophys Acta Biomembr 1858:1034–1043

    Article  CAS  Google Scholar 

  • Hazam PK, Jerath G, Chaudhary N, Ramakrishnan V (2017a) Peptido-mimetic approach in the design of syndiotactic antimicrobial peptides. Int J Pept Res Ther. https://doi.org/10.1007/s10989-017-9615-3

    Article  Google Scholar 

  • Hazam PK, Jerath G, Kumar A, Chaudhary N, Ramakrishnan V (2017b) Effect of tacticity-derived topological constraints in bactericidal peptides. Biochim Biophys Acta Biomembr 1859:1388–1395

    Article  CAS  PubMed  Google Scholar 

  • Henry RR, Rosenstock J, Logan D, Alessi T, Luskey K, Baron MA (2014) Continuous subcutaneous delivery of exenatide via ITCA 650 leads to sustained glycemic control and weight loss for 48 weeks in metformin-treated subjects with type 2 diabetes. J Diabetes Complicat 28:393–398

    Article  PubMed  Google Scholar 

  • Horne WS, Wiethoff CM, Cui C, Wilcoxen KM, Amorin M, Ghadiri MR, Nemerow GR (2005) Antiviral cyclic d,l-alpha-peptides: targeting a general biochemical pathway in virus infections. Bioorg Med Chem 13:5145–5153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaskiewicz M, Orlowska M, Olizarowicz G, Migon D, Grzywacz D, Kamysz W (2016) Rapid screening of antimicrobial synthetic peptides. Int J Pept Res Ther 22:155–161

    Article  CAS  PubMed  Google Scholar 

  • Jenssen H, Aspmo SI (2008) Serum stability of peptides. In: Otvos L (ed) Peptide-based drug design. Humana Press, Totowa, pp 177–186

    Chapter  Google Scholar 

  • Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Z, Higgins MP, Whitehurst J, Kisich KO, Voskuil MI, Hodges RS (2011) Anti-tuberculosis activity of alpha-helical antimicrobial peptides: de novo designed l- and d-enantiomers versus L- and D-LL-37. Protein Pept Lett 18:241–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joo H-S, Fu C-I, Otto M (2016) Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc B 371:20150292

    Article  CAS  Google Scholar 

  • Kaur KJ, Sarkar P, Nagpal S, Khan T, Salunke DM (2008) Structure–function analyses involving palindromic analogs of tritrypticin suggest autonomy of anti-endotoxin and antibacterial activities. Protein Sci 17:545–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khusro A, Aarti C, Agastian P (2016) Anti-tubercular peptides: a quest of future therapeutic weapon to combat tuberculosis. Asian Pac J Trop Med 9(11):1023–1034

    Article  CAS  PubMed  Google Scholar 

  • Koh JJ, Lin S, Aung TT, Lim F, Zou H, Bai Y, Li J, Lin H, Pang LM, Koh WL, Salleh SM, Lakshminarayanan R, Zhou L, Qiu S, Pervushin K, Verma C, Tan DT, Cao D, Liu S, Beuerman RW (2015) Amino acid modified xanthone derivatives: novel, highly promising membrane-active antimicrobials for multidrug-resistant Gram-positive bacterial infections. J Med Chem 58:739–752

    Article  CAS  PubMed  Google Scholar 

  • Kohlmorgen B, Elias J, Schoen C (2017) Improved performance of the artus Mycobacterium tuberculosis RG PCR kit low incidence setting: a retrospective monocentric study. Sci Rep 7:14127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kooi C, Sokol PA (2009) Burkholderia cenocepacia zinc metalloproteases influence resistance to antimicrobial peptides. Microbiology 155:2818–2825

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Ramakrishnan V (2010) Creating novel protein scripts beyond natural alphabets. Syst Synth Biol 4:247–256

    Article  PubMed  Google Scholar 

  • Kumar A, Ranbhor R, Patel K, Ramakrishnan V, Durani S (2017) Automated protein design: landmarks and operational principles. Prog Biophys Mol Biol 125:24–35

    Article  CAS  PubMed  Google Scholar 

  • Lan Y, Lam JT, Siu GKH, Yam WC, Mason AJ, Lam JKW (2014) Cationic amphipathic d-enantiomeric antimicrobial peptides with in vitro and ex vivo activity against drug-resistant Mycobacterium tuberculosis. Tuberculosis 94:678–689

    Article  CAS  PubMed  Google Scholar 

  • Li S, Tang B, He H (2016) An imbalanced learning based MDR-TB early warning system. J Med Syst 40:164

    Article  PubMed  Google Scholar 

  • Lienhardt C et al (2017) Target regimen profiles for treatment of tuberculosis: a WHO document. Eur Respir J 49:1602352

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra B, Wang G (2012) Ab initio design of potent anti-MRSA peptides based on database filtering technology. J Am Chem Soc 134:12426–12429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mogi T, Murase Y, Mori M, Shiomi K, Omura S, Paranagama MP, Kita K (2009) Polymyxin B identified as an inhibitor of alternative NADH dehydrogenase and malate: quinone oxidoreductase from the Gram-positive bacterium Mycobacterium smegmatis. J Biochem 146:491–499

    Article  CAS  PubMed  Google Scholar 

  • Molchanova N, Hansen P, Franzyk H (2017) Advances in development of antimicrobial peptidomimetics as potential drugs. Molecules 22:1430

    Article  CAS  PubMed Central  Google Scholar 

  • Moncla BJ, Pryke K, Rohan LC, Graebing PW (2011) Degradation of naturally occurring and engineered antimicrobial peptides by proteases. Adv Biosci Biotechnol 2:404–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen LT, Chau JK, Perry NA, de Boer L, Zaat SAJ, Vogel HJ (2010) Serum stabilities of short tryptophan- and arginine-rich antimicrobial peptide analogs. PLoS ONE 5:e12684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nizet V (2006) Antimicrobial peptide resistance mechanisms of human bacterial pathogens. Curr Issues Mol Biol 8:11–26

    CAS  PubMed  Google Scholar 

  • Olli S, Rangaraj N, Nagaraj R (2013) Effect of selectively introducing arginine and d-amino acids on the antimicrobial activity and salt sensitivity in analogs of human beta-defensins. PLoS ONE 8:e77031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oren Z, Shai Y (1997) Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure—function study. Biochemistry 36:1826–1835

    Article  CAS  PubMed  Google Scholar 

  • Park IY, Cho JH, Kim KS, Kim Y-B, Kim MS, Kim SC (2004) Helix stability confers salt resistance upon helical antimicrobial peptides. J Biol Chem 279:13896–13901

    Article  CAS  PubMed  Google Scholar 

  • Paterson DJ, Tassieri M, Reboud J, Wilson R, Cooper JM (2017) Lipid topology and electrostatic interactions underpin lytic activity of linear cationic antimicrobial peptides in membranes. Proc Natl Acad Sci 114:E8324–E8332

    Article  CAS  PubMed  Google Scholar 

  • Phyu S et al (2003) Drug-Resistant Mycobacterium tuberculosis among new tuberculosis patients, Yangon, Myanmar. Emerg Infect Dis 9:274–276

    Article  PubMed  PubMed Central  Google Scholar 

  • Podinovskaia M, Lee W, Caldwell S, Russell DG (2013) Infection of macrophages with Mycobacterium tuberculosis induces global modifications to phagosomal function. Cell Microbiol 15:843–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravichandran G, Kumaresan V, Arasu MV, Al-Dhabi NA, Ganesh M-R, Mahesh A, Dhayalan A, Pasupuleti M, Arockiaraj J (2016) Pellino-1 derived cationic antimicrobial prawn peptide: bactericidal activity, toxicity and mode of action. Mol Immunol 78:171–182

    Article  CAS  PubMed  Google Scholar 

  • Rueda J, Realpe T, Mejia G, Zapata E, Robledo J (2015) GenoType MTBDR plus 1.0(R) for the detection of cross-resistance between isoniazide and ethionamide in isolates of multidrug-resistant Mycobacterium tuberculosis. Biomedica 35:541–548

    Article  PubMed  Google Scholar 

  • Saikia K, Sravani YD, Ramakrishnan V, Chaudhary N (2017) Highly potent antimicrobial peptides from N-terminal membrane-binding region of E. coli MreB. Sci Rep 7:42994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandhu G (2011) Tuberculosis: current situation, challenges and overview of its control program in India. J Global Infect Dis 3:143–150

    Article  Google Scholar 

  • Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248

    Article  CAS  PubMed  Google Scholar 

  • Shai Y, Oren Z (1996) Diastereomers of cytolysins, a novel class of potent antibacterial peptides. J Biol Chem 271:7305–7308

    Article  CAS  PubMed  Google Scholar 

  • Sommer MOA, Munck C, Toft-Kehler RV, Andersson DI (2017) Prediction of antibiotic resistance: time for a new preclinical paradigm? Nat Rev Microbiol 15:689

    Article  CAS  PubMed  Google Scholar 

  • Starr CG, Wimley WC (2017) Antimicrobial peptides are degraded by the cytosolic proteases of human erythrocytes. Biochim Biophys Acta Biomembr 1859:2319–2326

    Article  CAS  PubMed  Google Scholar 

  • Stefanini ACB, da Cunha BR, Henrique T, Tajara EH (2015) Involvement of Kallikrein-related peptidases in normal and pathologic processes. Dis Markers 2015:946572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verreck FAW et al (2017) Variable BCG efficacy in rhesus populations: Pulmonary BCG provides protection where standard intra-dermal vaccination fails. Tuberculosis 104:46–45

    Article  CAS  PubMed  Google Scholar 

  • Wimley WC (2010) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol 5:905–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Zhu X, Tan T, Li W, Shan A (2014) Design of embedded-hybrid antimicrobial peptides with enhanced cell selectivity and anti-biofilm activity. PLoS ONE 9:e98935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacogn Rev 55:27–55

    CAS  Google Scholar 

  • Zuniga ES, Early J, Parish T (2015) The future for early-stage tuberculosis drug discovery. Future Microbiol 10:217–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Central Instrument Facility, IIT Guwahati for analytical support. Patent filed and published for antimicrobial peptide (Patent No: 333/KOL/2015 dated 26/03/2015).

Funding

This study was funded by BRNS (Project No. BSBESPNBRNS00864xxVR006), Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibin Ramakrishnan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethical Approval

All the testing and experiment related to human blood was performed as per the norms of ethical guidelines approved by ethical committee of Indian Institute of Technology Guwahati.

Informed Consent

All the subjects were informed and an informed consent was obtained as per the requirement.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 334 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazam, P.K., Singh, A., Chaudhary, N. et al. Bactericidal Potency and Extended Serum Life of Stereo-Chemically Engineered Peptides Against Mycobacterium. Int J Pept Res Ther 25, 465–472 (2019). https://doi.org/10.1007/s10989-018-9690-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-018-9690-0

Keywords

Navigation