Skip to main content
Log in

Operator Algebra Quantum Homogeneous Spaces of Universal Gauge Groups

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we quantize universal gauge groups such as SU(∞), as well as their homogeneous spaces, in the σ-C*-algebra setting. More precisely, we propose concise definitions of σ-C*-quantum groups and σ-C*-quantum homogeneous spaces and explain these concepts here. At the same time, we put these definitions in the mathematical context of countably compactly generated spaces as well as C*-compact quantum groups and homogeneous spaces. We also study the representable K-theory of these spaces and compute these groups for the quantum homogeneous spaces associated to the quantum version of the universal gauge group SU(∞).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blackadar B.: Shape theory for C*-algebras. Math. Scand. 56(2), 249–275 (1985)

    MathSciNet  MATH  Google Scholar 

  2. Bourbaki N.: General Topology, Chaps. 1–4. Elements of Mathematics. Springer, New York (1998)

    Google Scholar 

  3. Bragiel K.: The twisted SU(N) group. On the C*-algebra C(S μ U(N)). Lett. Math. Phys. 20(3), 251–257 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Carey A.L., Mickelsson J.: The universal gerbe, Dixmier-Douady class, and gauge theory. Lett. Math. Phys. 59(1), 47–60 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Harvey J.A., Moore G.: Noncommutative tachyons and K-theory. Strings, branes, and M-theory. J. Math. Phys. 42(7), 2765–2780 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Hodgkin L.: On the K-theory of Lie groups. Topology 6, 1–35 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kustermans J., Vaes S.: The operator algebra approach to quantum groups. Proc. Natl. Acad. Sci. USA 97(2), 547–552 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Kustermans, J., Vaes, S., Vainerman, L., Van Daele, A., Woronowicz, S.L.: Lecture Notes School/Conference on Noncommutative Geometry and Quantum Groups, Warsaw (2001). http://perswww.kuleuven.be/u0018768/artikels/lecture-notes.pdf

  9. Maldacena, J., Seiberg, N., Moore, G.: Geometrical interpretation of D-branes in gauged WZW models, J. High Energy Phys. 7, Paper 46, 63 pp (2001)

    Google Scholar 

  10. Mallios, A.: Topological algebras. Selected topics. In: North-Holland Mathematics Studies, vol. 124 (1984)

  11. Nagy G.: On the Haar measure of the quantum SU(N) group. Commun. Math. Phys. 153, 217–228 (1993)

    Article  ADS  MATH  Google Scholar 

  12. Nagy G.: Deformation quantization and K-theory. Perspectives on quantization. Contemp. Math. 214, 111–134 (1998)

    Article  Google Scholar 

  13. Nagy G.: A deformation quantization procedure for C*-algebras. J. Oper. Theory 44(2), 369–411 (2000)

    MATH  Google Scholar 

  14. Phillips N.C.: Inverse limits of C*-algebras. J. Oper. Theory 19(1), 159–195 (1988)

    MATH  Google Scholar 

  15. Phillips, N.C.: Inverse limits of C*-algebras and applications. Operator algebras and applications, vol. 1, pp. 127–185. London. Math. Soc. Lecture Note Ser., vol. 135 (1988)

  16. Phillips N.C.: Representable K-theory for σ-C*-algebras. K-Theory 3(5), 441–478 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Phillips N.C.: K-theory for Fréchet algebras. Int. J. Math. 2(1), 77–129 (1991)

    Article  MATH  Google Scholar 

  18. Sheu A.: Compact quantum groups and groupoid C*-algebras. J. Funct. Anal. 144, 371–393 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sheu A.: Quantum spheres as groupoid C*-algebras. Q. J. Math. Oxford Ser. (2) 48(192), 503–510 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sheu A.: Groupoid approach to quantum projective spaces. Operator algebras and operator theory. Contemp. Math. 228(1), 341–350 (1998)

    Article  MathSciNet  Google Scholar 

  21. Soibelman Ya.S.: Algebra of functions on a compact quantum group and its representations. Algebra Analiz 2(1), 190–212 (1990)

    MATH  Google Scholar 

  22. Soibelman Ya.S., Vaksman L.L.: The algebra of functions on the quantum group SU(n + 1), and odd-dimensional quantum spheres. Leningrad Math. J. 2, 1023–1042 (1991)

    MathSciNet  Google Scholar 

  23. Weidner, J.: KK-groups for generalized operator algebras. I, II. K-Theory 3(1), 57–77, 79–98 (1989)

  24. Woronowicz S.L.: A remark on compact matrix quantum groups. Lett. Math. Phys. 21(1), 35–39 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Woronowicz, S.L.: Compact quantum groups. Symétries quantiques (Les Houches), pp. 845–884. North-Holland, Amsterdam (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snigdhayan Mahanta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahanta, S., Mathai, V. Operator Algebra Quantum Homogeneous Spaces of Universal Gauge Groups. Lett Math Phys 97, 263–277 (2011). https://doi.org/10.1007/s11005-011-0492-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-011-0492-y

Mathematics Subject Classification (2000)

Keywords

Navigation