Skip to main content
Log in

Hypochlorite-oxidized low-density lipoprotein upregulates CD36 and PPARγ mRNA expression and modulates SR-BI gene expression in murine macrophages

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The uptake of oxidized low-density lipoprotein (oxLDL) by scavenger receptors of macrophages with resulting foam cell formation is considered a critical event in atherogenesis. Since hypochlorite-oxidized LDL (HOCl-LDL) has been shown to be recognized by macrophages and evidence was provided that HOCl-LDL is internalized via class B scavenger receptors CD36 and SR-BI, the regulatory relationships between CD36, SR-BI, and the nuclear transcription factor PPARγ in murine macrophages (RAW 264.7) on exposure to HOCl-LDL were examined. Using the highly sensitive real-time RT-PCR we could demonstrate that HOCl-LDL upregulated CD36 and PPARγ levels dose- and time dependently while modulating SR-BI message levels differently in dependence on HOCl-LDL concentration and incubation time. On exposure of macrophages to HOCl-LDL but not native LDL in varying concentrations, a significant positive correlation between CD36 and PPARγ (ρ = 0.603, p = 0.001) was observed indicating the presence of a positive feedback mechanism by which HOCl-LDL could promote its own uptake. The transcriptional expression of SR-BI in macrophages was not significantly related to PPARγ mRNA levels after treatment with HOCl-LDL suggesting a differential regulation of the two members of the scavenger receptor class B family in response to HOCl-LDL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hazen SL, Heinecke JW: 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest 99: 2075–2081, 1997

    PubMed  Google Scholar 

  2. Thukkani AK, McHowat J, Hsu FF, Brennan ML, Hazen SL, Ford DA: Identification of alpha-chloro fatty aldehydes and unsaturated lysophosphatidylcholine molecular species in human atherosclerotic lesions. Circulation 108: 3128–3133, 2003

    Article  PubMed  Google Scholar 

  3. Malle E, Waeg G, Schreiber R, Grone EF, Sattler W, Grone HJ: Immunohistochemical evidence for the myeloperoxidase/H2O2/halide system in human atherosclerotic lesions: colocalization of myeloperoxidase and hypochlorite-modified proteins. Eur J Biochem 267: 4495–503, 2000

    Article  PubMed  Google Scholar 

  4. Hazell LJ, Stocker R: Oxidation of low-density lipoprotein with hypochlorite causes transformation of the lipoprotein into a high-uptake form for macrophages. Biochem J 290: 165–172, 1993

    PubMed  Google Scholar 

  5. Kopprasch S, Leonhardt W, Pietzsch J, Kühne H: Hypochlorite-modified low-density lipoprotein stimulates human polymorphonuclear leukocytes for enhanced production of reactive oxygen metabolites, enzyme secretion, and adhesion to endothelial cells. Atherosclerosis 136: 315–324, 1998.

    Article  PubMed  Google Scholar 

  6. Kopprasch S, Pietzsch J, Westendorf T, Kruse HJ, Graessler J: The pivotal role of scavenger receptor CD36 and phagocyte-derived oxidants in oxidized low density lipoprotein-induced adhesion to endothelial cells. Int J Biochem Cell Biol 36: 460–471, 2004

    Article  PubMed  Google Scholar 

  7. Krieger M: Scavenger receptor class B type I is a multiligand HDL receptor that influences diverse physiologic systems. J Clin Invest 108: 793–797, 2001

    Article  PubMed  Google Scholar 

  8. Nicholson AC, Frieda S, Pearce A, Silverstein RL: Oxidized LDL binds to CD36 on human monocyte-derived macrophages and transfected cell lines. Evidence implicating the lipid moiety of the lipoprotein as the binding site. Arterioscler Thromb Vasc Biol 15: 269–75, 1995

    PubMed  Google Scholar 

  9. Marsche G, Zimmermann R, Horiuchi S, Tandon NN, Sattler W, Malle E: Class B scavenger receptors CD36 and SR-BI are receptors for hypochlorite-modified low density lipoprotein. J Biol Chem 278: 47562–47570, 2003

    Article  PubMed  Google Scholar 

  10. Feng J, Han J, Pearce SF, Silverstein RL, Gotto AM Jr, Hajjar DP, Nicholson AC: Induction of CD36 expression by oxidized LDL and IL-4 by a common signaling pathway dependent on protein kinase C and PPAR-gamma. J Lipid Res 41: 688–696, 2000

    PubMed  Google Scholar 

  11. Kavanagh IC, Symes CE, Renaudin P, Nova E, Mesa MD, Boukouvalas G, Leake DS, Yaqoob P: Degree of oxidation of low density lipoprotein affects expression of CD36 and PPARgamma, but not cytokine production, by human monocyte-macrophages. Atherosclerosis 168: 271–282, 2003

    Article  PubMed  Google Scholar 

  12. Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM: Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 93: 229–240, 1998

    Article  PubMed  Google Scholar 

  13. Jiang C, Ting AT, Seed B: PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391: 82–86, 1998

    Article  PubMed  Google Scholar 

  14. Chinetti G, Gbaguidi FG, Griglio S, Mallat Z, Antonucci M, Poulain P, Chapman J, Fruchart JC, Tedgui A, Najib-Fruchart J, Staels B: CLA-1/SR-BI is expressed in atherosclerotic lesion macrophages and regulated by activators of peroxisome proliferator-activated receptors. Circulation 101: 2411–2417, 2000

    PubMed  Google Scholar 

  15. Pietzsch J, Subat S, Nitzsche S, Leonhardt W, Schentke KU, Hanefeld M: Very fast ultracentrifugation of serum lipoproteins: influence on lipoprotein separation and composition. Biochim Biophys Acta 1254: 77–88, 1995

    PubMed  Google Scholar 

  16. Shoji T, Nishizawa Y, Fukumoto M, Shimamura K, Kimura J, Kanda H, Emoto M, Kawagishi T, Morii H: Inverse relationship between circulating oxidized low density lipoprotein (oxLDL) and anti-oxLDL antibody levels in healthy subjects. Atherosclerosis 148: 171–177, 2000

    Article  PubMed  Google Scholar 

  17. Hazell LJ, Arnold L, Flowers, D, Waeg G, Malle E, Stocker R: Presence of hypochlorite-modified proteins in human atherosclerotic lesions. J Clin Invest 97: 1535–1544, 1996

    PubMed  Google Scholar 

  18. Savill J, Hogg N, Haslett C: Macrophage vitronectin receptor, CD36, and thrombospondin cooperate in recognition of neutrophils undergoing programme cell death. Chest 99: 6S–7S, 1991

    Google Scholar 

  19. Abumrad NA, el-Maghrabi MR, Amri EZ, Lopez E, Grimaldi PA: Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem 268: 17665–17668, 1993

    PubMed  Google Scholar 

  20. Febbraio M, Hajjar DP, Silverstein RL: CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 108: 785–791, 2001

    Article  PubMed  Google Scholar 

  21. Hirano K, Yamashita S, Nakagawa Y, Ohya T, Matsuura F, Tsukamoto K, Okamoto Y, Matsuyama A, Matsumoto K, Miyagawa J, Matsuzawa Y: Expression of human scavenger receptor class B type I in cultured human monocyte-derived macrophages and atherosclerotic lesions. Circ Res 85: 108–116, 1999

    PubMed  Google Scholar 

  22. Rhainds D, Brissette L: The role of scavenger receptor class B type I (SR-BI) in lipid trafficking. Defining the rules for lipid traders. Int J Biochem Cell Biol 36: 39–77, 2004

    Article  PubMed  Google Scholar 

  23. Van Eck M, Bos IS, Hildebrand RB, Van Rij BT, Van Berkel TJC: Dual role for scavenger receptor class B, type I on bone marrow-derived cells in atherosclerotic lesion development. Am J Pathol 165: 785–794, 2004

    PubMed  Google Scholar 

  24. Han J, Nicholson AC, Zhou X, Feng J, Gotto AM Jr, Hajjar DP: Oxidized low density lipoprotein decreases macrophage expression of scavenger receptor B-I. J Biol Chem 276: 16567–16572, 2001

    Article  PubMed  Google Scholar 

  25. Yu L, Cao G, Repa J, Stangl H: Sterol regulation of scavenger receptor class B type I in macrophages. J Lipid Res 45: 889–899, 2004

    Article  PubMed  Google Scholar 

  26. Lam MCW, Tan KCB, Lam KSL: Glycoxidized low-density lipoprotein regulates the expression of scavenger receptors in THP-1 macrophages. Atherosclerosis 177: 313–320, 2004

    Article  PubMed  Google Scholar 

  27. Plutzky J: Peroxisome proliferator-activated receptors in vascular biology and atherosclerosis: emerging insights for evolving paradigm. Curr Atheroscler Rep 2: 327–335, 2000

    PubMed  Google Scholar 

  28. Collins AR, Meehan WP, Kintscher U, Jackson S, Wakino S, Noh G, Palinski W, Hsueh WA, Law RE: Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 21: 365–371, 2001

    PubMed  Google Scholar 

  29. Argmann CA, Sawyez CG, McNeil CJ, Hegele RA, Huff WM: Activation of peroxisome proliferator-activated receptor gamma and retinoid X receptor results in net depletion of cellular cholesteryl esters in macrophages exposed to oxidized lipoprotein. Arterioscler Thromb Vasc Biol 23: 475–482, 2003

    Article  PubMed  Google Scholar 

  30. Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM: PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93: 241–252, 1998

    Article  PubMed  Google Scholar 

  31. Malerod L, Sporstol M, Juvet LK, Mousavi A, Gjoen T, Berg T: Hepatic scavenger receptor class B, type I is stimulated by peroxisome proliferator-activated receptor gamma and hepatocytes nuclear factor 4alpha. Biochem Biophys Res Commun 305: 557–565, 2003

    Article  PubMed  Google Scholar 

  32. Malerod L, Juvet LK, Hanssen-Bauer A, Eskild W, Berg T: Oxysterol-activated LXRalpha/RXR induces hSR-BI-promoter activity in hepatoma cells and preadipocytes. Biochem Biophys Res Commun 299: 916–923, 2002

    Article  PubMed  Google Scholar 

  33. Lopez D, McLean MP: Sterol regulatory element-binding protein-1a binds to cis elements in the promoter of the rat high density lipoprotein receptor SR-BI gene. Endocrinology 140: 5669–5681, 1999

    Article  PubMed  Google Scholar 

  34. Chawla A, Barak Y, Nagy L, Liao D, Tontonoz P, Evans RM: PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 7: 48–52, 2001

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffi Kopprasch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westendorf, T., Graessler, J. & Kopprasch, S. Hypochlorite-oxidized low-density lipoprotein upregulates CD36 and PPARγ mRNA expression and modulates SR-BI gene expression in murine macrophages. Mol Cell Biochem 277, 143–152 (2005). https://doi.org/10.1007/s11010-005-5873-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-5873-z

Keywords

Navigation