Skip to main content

Advertisement

Log in

Chemopreventive effect of lycopene alone or with melatonin against the genesis of oxidative stress and mammary tumors induced by 7,12 dimethyl(a)benzanthracene in sprague dawely female rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Breast cancer is the principle cause of death among women worldwide. In this study, we investigated the anti-tumor potential of lycopene (Lyco) alone or combined with melatonin (Lyco + Mel) for 120 days against a single oral dose of (50 mg/kg B.W.) 7,12-dimethylbenz(a)anthracene (DMBA)-induced oxidative stress and mammary carcinogenesis in female rats. The treatment protocol started from the day immediately after DMBA administration. Results obtained indicated that there was an elevation in the levels of malondialdhyde and nitric oxide in serum and breast tissues of DMBA injected rats. The combined treatment (Lyco + Mel) group showed a potential reduction of these parameters more than lyco individually. The activities of SOD, CAT, and GPx were found to be significantly high than lyco alone treated rats. In DMBA group a negative significant correlation between weight and serum nitric oxide (r = −0.59), and a positive significant correlation between NO and MDA (r = 0.81) was observed. Histopathological examination revealed the formation of tumor and angiogenesis in DMBA-induced rats and these abnormal changes were ameliorated by combined treatment with Lyco + Mel. In conclusion, these results suggested that supplementation of diet with lycopene with melatonin provided antioxidant defense with strong chemo preventive activity against DMBA-induced mammary tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bray F, McCarron P, Parkin DM (2004) The changing global patterns of female breast cancer incidence and mortality. Breast Cancer Res 6:229–239. doi:10.1186/bcr932

    Article  PubMed  Google Scholar 

  2. Aruoma OI (1994) Nutrition and health aspects of free radicals and antioxidants. Food Chem Toxicol 32:671–685. doi:10.1016/0278-6915(94)90011-6

    Article  PubMed  CAS  Google Scholar 

  3. Cerutti PA (1985) Prooxidant states and tumor promotion. Science 227:375–381. doi:10.1126/science.2981433

    Article  PubMed  CAS  Google Scholar 

  4. Jagetia GC, Rao SK (2006) Evaluation of the antineoplastic activity of guduchi (Tinospora cordifolia) in Ehrlich ascites carcinoma bearing mice. Biol Pharm Bull 29:460–466. doi:10.1248/bpb.29.460

    Article  PubMed  CAS  Google Scholar 

  5. Vijayavel K, Anbuselvam C, Balasubramanian MP (2006) Free radical scavenging activity of the marine mangrove Rhizophora apiculata bark extract with reference to naphthalene induced mitochondrial dysfunction. Chem Biol Int 163:170–175. doi:10.1016/j.cbi.2006.06.003

    Article  CAS  Google Scholar 

  6. Rao V, Agarwal S (1999) Role of lycopene as antioxidant carotenoids in the prevention of chronic diseases: a review. Nutr Res 19(2):305–323. doi:10.1016/S0271-5317(98)00193-6

    Article  CAS  Google Scholar 

  7. Joseph BG, Michael C, Wieslawa K, Seth T, Zhonglin Z, Leonard AC (2001) Effects of a lycopene-rich diet on spontaneous and benzo[a]pyrene-induced mutagenesis in prostate, colon and lungs of the lacZ mouse. Cancer Lett 164:1–6. doi:10.1016/S0304-3835(00)00705-9

    Article  Google Scholar 

  8. Gerster H (1997) The potential role of lycopene for human health. J Am Coll Nutr 16:109–126

    PubMed  CAS  Google Scholar 

  9. Clinton SK (1998) Lycopene: chemistry, biology, and implications for human health and disease. Nutr Rev 56:35–51

    Article  PubMed  CAS  Google Scholar 

  10. Fuhramn B, Elis A, Aviram M (1997) Hypocholesterolemic effect of lycopene and ß-carotene is related to suppression of cholesterol synthesis and augmentation of LDL receptor activity in macrophage. Biochem Biophys Res Commun 233:658–662. doi:10.1006/bbrc.1997.6520

    Article  Google Scholar 

  11. Hussein MR, Abu-Dief EE, Abdel Reheem MH, Abdel Rahman A (2005) Ultra structural evaluation of the radio protective effects of melatonin against X-ray induced skin damage in Albino rats. Int J Exp Pathol 86:45–55. doi:10.1111/j.0959-9673.2005.00412.x

    Article  PubMed  CAS  Google Scholar 

  12. Reiter MH, Tan DX, Cabrera J et al (1999) The oxidant/antioxidant network; role of melatonin. Biol Signals Recept 8:56–63. doi:10.1159/000014569

    Article  PubMed  CAS  Google Scholar 

  13. Maestroni GJ, Conti A (1989) Beta-endorphin and dynorphin mimic the circadian immunoenhancing and anti-stress effects of melatonin. Int J Immunopharmacol 11:333–340. doi:10.1016/0192-0561(89)90078-7

    Article  PubMed  CAS  Google Scholar 

  14. Astrog P, Gradelet S, Berges R, Suschetet M (1997) Dietary lycopene decreases initiation of liver preneoplastic foci by diethylnitrosamine in rat. Nutr Cancer 29:60–65

    Article  Google Scholar 

  15. Henry L, Narendra PS (2006) Oral artemisinin prevents and delays the development of 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer in the rat. Cancer Lett 231:43–44. doi:10.1016/j.canlet.2005.01.019

    Article  CAS  Google Scholar 

  16. Delphine G, Bernard L, Jérémie T, Andrzej M, Stéphane G, Catherine C, Edmond R (2007) Serum from rats fed red or yellow tomatoes induces Connexin43 expression independently from lycopene in a prostate cancer cell line. Biochem Biophys Res Commun 364:578–582. doi:10.1016/j.bbrc.2007.10.030

    Article  CAS  Google Scholar 

  17. Mohamed AM, Hosny AH, Mahmoud HM, Abdelreheim AA, Sary KH, Mhmoud RH (2005) The biochemical and morphological alterations following administration of melatonin, retinoic acid and nigella sativa in mammary carcinoma: an animal model. Int J Exp Pathol 86:383–396. doi:10.1111/j.0959-9673.2005.00448.x

    Article  PubMed  Google Scholar 

  18. Vodovotz Y (1996) Modified microassay for serum nitrite and nitrate. Biotechniques 20(3):390–394

    PubMed  CAS  Google Scholar 

  19. Zima T, Stipek S, Crkovska J, Platenik J (1995) Measurement of lipid peroxidation products in biological samples by spectrophotometric and HPLC assay. Klin Biochem Metab 3(24):98–102

    Google Scholar 

  20. Flohe L, Otting F (1984) Superoxide dismutase assays. Methods Enzymol 105:93. doi:10.1016/S0076-6879(84)05013-8

    Article  PubMed  CAS  Google Scholar 

  21. Claiborne A (1985) Catalase activity. In: Greenwald RA (ed) CRC handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 283–284

    Google Scholar 

  22. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. doi:10.1016/0003-9861(59)90090-6

    Article  PubMed  CAS  Google Scholar 

  23. Costa I, Solanas M, Escrich E (2002) Histopathologic characterization of mammary neoplastic lesions induced with 7,12-dimethylbenz(a)anthracene in the rat. A comparative analysis with human breast tumor. Arch Pathol Lab Med 126:915–927

    PubMed  Google Scholar 

  24. Ramar PS, Ponnampalam G, Savarimuthu I (2006) Anti-tumor promoting potential of luteolin against 7,12-dimethylbenz(a)anthracene-induced mammary tumors in rats. Chem Biol Interact 164:1–14. doi:10.1016/j.cbi.2006.08.018

    Article  CAS  Google Scholar 

  25. Mehta RG (2000) Experimental basis for the prevention of breast cancer. Eur J Cancer 36:1275–1282. doi:10.1016/S0959-8049(00)00100-3

    Article  PubMed  CAS  Google Scholar 

  26. Giri U, Sharma SD, Abdulla M, Athar M (1995) Evidence that in situ generated reactive oxygen species act as a potent stage I tumor promoter in mouse skin. Biochem Biophys Res Commun 209(2):698–705. doi:10.1006/bbrc.1995.1555

    Article  PubMed  CAS  Google Scholar 

  27. Davis L, Kuttan G (2001) Effect of Withania somnifera on DMBA induced carcinogenesis. J Ethnopharmacol 75:165–168. doi:10.1016/S0378-8741(00)00404-9

    Article  PubMed  CAS  Google Scholar 

  28. Huang YL, Sheu JY, Lin TH (1999) Association between oxidative stress and changes of trace elements in patients with breast cancer. Clin Biochem 32:31–36. doi:10.1016/S0009-9120(98)00096-4

    Article  Google Scholar 

  29. Weydert CJ, Waugh TA, Ritchie JM, Iyer KS, Smith JL, Li L, Spitz DR, Oberley LW (2006) Overexpression of manganese or copper-zinc superoxide dismutase inhibits breast cancer growth. Free Radic Biol Med 41:226–237

    Article  PubMed  CAS  Google Scholar 

  30. Gonenc A, Erten D, Aslan S, Akyncy M, Simşek B, Torun M (2006) Lipid peroxidation and antioxidant status in blood and tissue of malignant breast tumour and benign breast disease. Cell Biol Int 30:376–380. doi:10.1016/j.cellbi.2006.02.005

    Article  PubMed  CAS  Google Scholar 

  31. Cerutti P, Ghosh R, Oya Y, Amstad P (1994) The role of cellular antioxidant defence in oxidant carcinogenesis. Environ Health Perspect 102(10):123–129. doi:10.2307/3432228

    Article  PubMed  CAS  Google Scholar 

  32. Bewick M, Coutie W, Tudhope GR (1987) Superoxide dismutase, glutathione peroxidase and catalase in the red cells of patients with malignant lymphoma. Br J Haematol 65:347–350. doi:10.1111/j.1365-2141.1987.tb06866.x

    Article  PubMed  CAS  Google Scholar 

  33. Cohen M, Lippman M, Chabner B (1978) Role of pineal gland in aetiology and treatment of breast cancer. Lancet 2:814–816. doi:10.1016/S0140-6736(78)92591-6

    Article  PubMed  CAS  Google Scholar 

  34. Tamarkin L, Cohen M, Roselle D, Reichert C, Lippman M, Chabner B (1981) Melatonin inhibition and pinealectomy enhancement of 7,12-dimethylbenz(a)anthracene-induced mammary tumors in the rat. Cancer Res 41(11):4432–4436

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank prof. Dr. Taha Kumosani, Head of Biochemistry Dep., Faculty of Science, KAU, Jeddah, KSA for his kind facilitation of supplies for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said S. Moselhy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moselhy, S.S., Al mslmani, M.A.B. Chemopreventive effect of lycopene alone or with melatonin against the genesis of oxidative stress and mammary tumors induced by 7,12 dimethyl(a)benzanthracene in sprague dawely female rats. Mol Cell Biochem 319, 175–180 (2008). https://doi.org/10.1007/s11010-008-9890-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9890-6

Keywords

Navigation