Skip to main content

Advertisement

Log in

Bone morphogenetic protein 4 (BMP4) is required for migration and invasion of breast cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Bone-morphogenetic proteins (BMPs) play an important role in development and many cellular processes. However, their functional role in the development and progression of breast cancer is not clearly understood. In the present study, we performed a systematic expression analysis of the 14 types of BMPs in 10 human breast cancer cell lines. We found that bone morphogenetic protein 4 (BMP4) was one of the most frequently expressed BMPs. Furthermore, the expression level of BMP4 was maybe correlated with the metastatic potential of the cancer lines. Accordingly, overexpression of BMP4 in the breast cancer cell lines MCF-7 and MBA-MD-231 promoted the migration and invasion phenotypes of the cancer cells, whereas RNAi-mediated knockdown of BMP4 expression inhibited the migration and invasion activities of the cancer cells. To identify the important factors that may mediate the BMP4 functions in breast cancer cells, we analyzed a panel of cancer-related genes, and found that the expression of matrix metalloproteinase-1 (MMP-1) and C-X-C chemokine receptor type 4 (CXCR4) sharply increased at both the mRNA and protein levels in the breast cancer cells overexpressing BMP4. Interestingly, when breast cancer cells MDA-MB-231 or MCF-7 were co-cultured with the osteoblast-like cells MG63 to mimic a bone metastasis microenvironment, BMP4 did not exhibit any significant effect on the expression of OPG or RANKL, two important factors in bone remodeling. BMPs antagonists, Noggin, parallel inhibited breast cancer cell migration and invasion and induced bone remodeling. Taken together, our results strongly suggest that BMP4 may promote the migration and invasion of breast cancer cells, at least in part by up-regulating the expressions of MMP-1 and CXCR4. It is conceivable that novel therapeutics for breast cancer may be developed by targeting BMP4 signaling pathway and/or its important downstream mediators in breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BMP4:

Bone morphogenetic proteins 4

MMP-1:

Matrix metalloproteinase-1

CXCR4:

C-X-C chemokine receptor type 4

CXCL12:

Chemokine (C-X-C motif) ligand 12, SDF-1

OPG:

Osteoprotegerin

RANKL:

Receptor activator of NF-kB ligand

GFP:

Green fluorescent protein

RFP:

Red fluorescent protein

RT-PCR:

Reverse transcriptase-polymerase chain reaction

qPCR:

Real-time quantitative PCR

References

  1. Plunkett TA, Smith P, Rubens RD (2000) Risk of complications from bone metastases in breast cancer—implications for management. Eur J Cancer 36:476–482

    Article  PubMed  CAS  Google Scholar 

  2. Wozney JM (2002) Overview of bone morphogenetic proteins. Spine (Phila Pa 1976) 27:S2–S8

    Article  Google Scholar 

  3. Hogan BL (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 10:1580–1594

    Article  PubMed  CAS  Google Scholar 

  4. Alarmo E-L, Kuukasjärvi T, Karhu R, Kallioniemi A (2006) A comprehensive expression survey of bone morphogenetic proteins in breast cancer highlights the importance of BMP4 and BMP7. Breast Cancer Res Treat 103:239–246. doi:10.1007/s10549-006-9362-1

    Article  PubMed  Google Scholar 

  5. Katsuno Y, Hanyu A, Kanda H, Ishikawa Y, Akiyama F, Iwase T, Ogata E, Ehata S, Miyazono K, Imamura T (2008) Bone morphogenetic protein signaling enhances invasion and bone metastasis of breast cancer cells through Smad pathway. Oncogene 27:6322–6333. doi:10.1038/onc.2008.232

    Article  PubMed  CAS  Google Scholar 

  6. Helms MW, Packeisen J, August C, Schittek B, Boecker W, Brandt BH, Buerger H (2005) First evidence supporting a potential role for the BMP/SMAD pathway in the progression of oestrogen receptor-positive breast cancer. J Pathol 206:366–376. doi:10.1002/path.1785

    Article  PubMed  CAS  Google Scholar 

  7. Clement JH, Raida M, Sanger J, Bicknell R, Liu J, Naumann A, Geyer A, Waldau A, Hortschansky P, Schmidt A, Hoffken K, Wolft S, Harris AL (2005) Bone morphogenetic protein 2 (BMP-2) induces in vitro invasion and in vivo hormone independent growth of breast carcinoma cells. Int J Oncol 27:401–407

    PubMed  CAS  Google Scholar 

  8. Raida M, Clement JH, Leek RD, Ameri K, Bicknell R, Niederwieser D, Harris AL (2005) Bone morphogenetic protein 2 (BMP-2) and induction of tumor angiogenesis. J Cancer Res Clin Oncol 131:741–750. doi:10.1007/s00432-005-0024-1

    Article  PubMed  CAS  Google Scholar 

  9. Du J, Yang S, An D, Hu F, Yuan W, Zhai C, Zhu T (2009) BMP-6 inhibits microRNA-21 expression in breast cancer through repressing deltaEF1 and AP-1. Cell Res 19:487–496. doi:10.1038/cr.2009.34

    Article  PubMed  CAS  Google Scholar 

  10. Yang S, Du J, Wang Z, Yuan W, Qiao Y, Zhang M, Zhang J, Gao S, Yin J, Sun B, Zhu T (2007) BMP-6 promotes E-cadherin expression through repressing delta EF1 in breast cancer cells. BMC Cancer 7:211. doi:10.1186/1471-2407-7-211

    Article  PubMed  Google Scholar 

  11. Yang S, Du J, Wang Z, Yan J, Yuan W, Zhang J, Zhu T (2009) Dual mechanism of δEF1 expression regulated by bone morphogenetic protein-6 in breast cancer. Int J Biochem Cell Biol 41:853–861. doi:10.1016/j.biocel.2008.08.030

    Article  PubMed  CAS  Google Scholar 

  12. Ye L, Bokobza S, Li J, Moazzam M, Chen J, Mansel RE, Jiang WG (2010) Bone morphogenetic protein-10 (BMP-10) inhibits aggressiveness of breast cancer cells and correlates with poor prognosis in breast cancer. Cancer Sci 101:2137–2144. doi:10.1111/j.1349-7006.2010.01648.x

    Article  PubMed  CAS  Google Scholar 

  13. Hanavadi S, Martin TA, Watkins G, Mansel RE, Jiang WG (2007) The role of growth differentiation factor-9 (GDF-9) and its analog, GDF-9b/BMP-15, in human breast cancer. Ann Surg Oncol 14:2159–2166. doi:10.1245/s10434-007-9397-5

    Article  PubMed  CAS  Google Scholar 

  14. Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L, Luu HH, An N, Breyer B, Vanichakarn P, Szatkowski JP, Park JY, He TC (2003) Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am 85-A:1544–1552

    PubMed  Google Scholar 

  15. Kang Q, Sun MH, Cheng H, Peng Y, Montag AG, Deyrup AT, Jiang W, Luu HH, Luo J, Szatkowski JP, Vanichakarn P, Park JY, Li Y, Haydon RC, He TC (2004) Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther 11:1312–1320. doi:10.1038/sj.gt.3302298

    Article  PubMed  CAS  Google Scholar 

  16. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 95:2509–2514

    Article  PubMed  CAS  Google Scholar 

  17. Luo J, Deng ZL, Luo X, Tang N, Song WX, Chen J, Sharff KA, Luu HH, Haydon RC, Kinzler KW, Vogelstein B, He TC (2007) A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc 2:1236–1247. doi:10.1038/nprot.2007.135

    Article  PubMed  CAS  Google Scholar 

  18. Luo Q, Kang Q, Song WX, Luu HH, Luo X, An N, Luo J, Deng ZL, Jiang W, Yin H, Chen J, Sharff KA, Tang N, Bennett E, Haydon RC, He TC (2007) Selection and validation of optimal siRNA target sites for RNAi-mediated gene silencing. Gene 395:160–169. doi:10.1016/j.gene.2007.02.030

    Article  PubMed  CAS  Google Scholar 

  19. Su Y, Luo X, He BC, Wang Y, Chen L, Zuo GW, Liu B, Bi Y, Huang J, Zhu GH, He Y, Kang Q, Luo J, Shen J, Chen J, Jin X, Haydon RC, He TC, Luu HH (2009) Establishment and characterization of a new highly metastatic human osteosarcoma cell line. Clin Exp Metastasis 26:599–610. doi:10.1007/s10585-009-9259-6

    Article  PubMed  CAS  Google Scholar 

  20. Bi Y, Huang J, He Y, Zhu GH, Su Y, He BC, Luo J, Wang Y, Kang Q, Luo Q, Chen L, Zuo GW, Jiang W, Liu B, Shi Q, Tang M, Zhang BQ, Weng Y, Huang A, Zhou L, Feng T, Luu HH, Haydon RC, He TC, Tang N (2009) Wnt antagonist SFRP3 inhibits the differentiation of mouse hepatic progenitor cells. J Cell Biochem 108:295–303. doi:10.1002/jcb.22254

    Article  PubMed  CAS  Google Scholar 

  21. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458. doi:10.1038/nrc1098

    Article  PubMed  CAS  Google Scholar 

  22. Wang X, Lu H, Urvalek AM, Li T, Yu L, Lamar J, Dipersio CM, Feustel PJ and Zhao J (2010) KLF8 promotes human breast cancer cell invasion and metastasis by transcriptional activation of MMP9. Oncogene. doi:10.1038/onc.2010.563

  23. Sapkota D, Bruland O, Costea DE, Haugen H, Vasstrand EN and Ibrahim SO (2010) S100A14 regulates the invasive potential of oral squamous cell carcinoma derived cell-lines in vitro by modulating expression of matrix metalloproteinases, MMP1 and MMP9. Eur J Cancer. doi:10.1016/j.ejca.2010.10.012

  24. Dewan MZ, Ahmed S, Iwasaki Y, Ohba K, Toi M, Yamamoto N (2006) Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer. Biomed Pharmacother 60:273–276. doi:10.1016/j.biopha.2006.06.004

    Article  PubMed  CAS  Google Scholar 

  25. Shepherd TG, Theriault BL, Nachtigal MW (2008) Autocrine BMP4 signalling regulates ID3 proto-oncogene expression in human ovarian cancer cells. Gene 414:95–105. doi:10.1016/j.gene.2008.02.015

    Article  PubMed  CAS  Google Scholar 

  26. Theriault BL, Shepherd TG, Mujoomdar ML, Nachtigal MW (2007) BMP4 induces EMT and Rho GTPase activation in human ovarian cancer cells. Carcinogenesis 28:1153–1162. doi:10.1093/carcin/bgm015

    Article  PubMed  CAS  Google Scholar 

  27. Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco F, Vescovi AL (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444:761–765. doi:10.1038/nature05349

    Article  PubMed  CAS  Google Scholar 

  28. Rothhammer T, Bataille F, Spruss T, Eissner G, Bosserhoff AK (2007) Functional implication of BMP4 expression on angiogenesis in malignant melanoma. Oncogene 26:4158–4170. doi:10.1038/sj.onc.1210182

    Article  PubMed  CAS  Google Scholar 

  29. Hjertner O, Hjorth-Hansen H, Borset M, Seidel C, Waage A, Sundan A (2001) Bone morphogenetic protein-4 inhibits proliferation and induces apoptosis of multiple myeloma cells. Blood 97:516–522

    Article  PubMed  CAS  Google Scholar 

  30. Malemud CJ (2006) Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci 11:1696–1701. doi:10.2741/1915

    Article  PubMed  CAS  Google Scholar 

  31. Hanemaaijer R, Verheijen JH, Maguire TM, Visser H, Toet K, McDermott E, O’Higgins N, Duffy MJ (2000) Increased gelatinase-A and gelatinase-B activities in malignant vs. benign breast tumors. Int J Cancer 86:204–207. doi:10.1002/(SICI)1097-0215(20000415)86:2<204:AID-IJC9>3.0.CO;2-6

    Article  PubMed  CAS  Google Scholar 

  32. London CA, Sekhon HS, Arora V, Stein DA, Iversen PL, Devi GR (2003) A novel antisense inhibitor of MMP-9 attenuates angiogenesis, human prostate cancer cell invasion and tumorigenicity. Cancer Gene Ther 10:823–832. doi:10.1038/sj.cgt.7700642

    Article  PubMed  CAS  Google Scholar 

  33. Riedel F, Gotte K, Schwalb J, Bergler W, Hormann K (2000) Expression of 92-kDa type IV collagenase correlates with angiogenic markers and poor survival in head and neck squamous cell carcinoma. Int J Oncol 17:1099–1105

    PubMed  CAS  Google Scholar 

  34. Scorilas A, Karameris A, Arnogiannaki N, Ardavanis A, Bassilopoulos P, Trangas T, Talieri M (2001) Overexpression of matrix-metalloproteinase-9 in human breast cancer: a potential favourable indicator in node-negative patients. Br J Cancer 84:1488–1496. doi:10.1054/bjoc.2001.1810

    Article  PubMed  CAS  Google Scholar 

  35. Wyatt CA, Geoghegan JC, Brinckerhoff CE (2005) Short hairpin RNA-mediated inhibition of matrix metalloproteinase-1 in MDA-231 cells: effects on matrix destruction and tumor growth. Cancer Res 65:11101–11108. doi:10.1158/0008-5472.CAN-05-2446

    Article  PubMed  CAS  Google Scholar 

  36. Daniele A, Zito AF, Giannelli G, Divella R, Asselti M, Mazzocca A, Paradiso A, Quaranta M (2010) Expression of metalloproteinases MMP-2 and MMP-9 in sentinel lymph node and serum of patients with metastatic and non-metastatic breast cancer. Anticancer Res 30:3521–3527

    PubMed  CAS  Google Scholar 

  37. Stankovic S, Konjevic G, Gopcevic K, Jovic V, Inic M, Jurisic V (2010) Activity of MMP-2 and MMP-9 in sera of breast cancer patients. Pathol Res Pract 206:241–247. doi:10.1016/j.prp.2009.12.003

    Article  PubMed  CAS  Google Scholar 

  38. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    Article  PubMed  CAS  Google Scholar 

  39. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massague J (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524. doi:10.1038/nature03799

    Article  PubMed  CAS  Google Scholar 

  40. Hassan S, Ferrario C, Saragovi U, Quenneville L, Gaboury L, Baccarelli A, Salvucci O, Basik M (2009) The influence of tumor-host interactions in the stromal cell-derived factor-1/CXCR4 ligand/receptor axis in determining metastatic risk in breast cancer. Am J Pathol 175:66–73. doi:10.2353/ajpath.2009.080948

    Article  PubMed  CAS  Google Scholar 

  41. Liang Z, Wu H, Reddy S, Zhu A, Wang S, Blevins D, Yoon Y, Zhang Y, Shim H (2007) Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial microRNA. Biochem Biophys Res Commun 363:542–546. doi:10.1016/j.bbrc.2007.09.007

    Article  PubMed  CAS  Google Scholar 

  42. Li HY, Ren GS, Tan JX (2009) Effect of small interfering RNA targeting CXCR4 on breast cancer angiogenesis. Nan Fang Yi Ke Da Xue Xue Bao 29:954–958

    PubMed  CAS  Google Scholar 

  43. Li HY, Ren GS, Tan JX (2009) The effects of shRNA-CXCR4 on breast cancer cells migration and invasion. Sichuan Da Xue Xue Bao Yi Xue Ban 40:393–397

    PubMed  CAS  Google Scholar 

  44. Richert MM, Vaidya KS, Mills CN, Wong D, Korz W, Hurst DR, Welch DR (2009) Inhibition of CXCR4 by CTCE-9908 inhibits breast cancer metastasis to lung and bone. Oncol Rep 21:761–767

    PubMed  CAS  Google Scholar 

  45. Huang EH, Singh B, Cristofanilli M, Gelovani J, Wei C, Vincent L, Cook KR, Lucci A (2009) A CXCR4 antagonist CTCE-9908 inhibits primary tumor growth and metastasis of breast cancer. J Surg Res 155:231–236. doi:10.1016/j.jss.2008.06.044

    Article  PubMed  CAS  Google Scholar 

  46. Mizell J, Smith M, Li BD, Ampil F, Chu QD (2009) Overexpression of CXCR4 in primary tumor of patients with HER-2 negative breast cancer was predictive of a poor disease-free survival: a validation study. Ann Surg Oncol 16:2711–2716. doi:10.1245/s10434-009-0551-0

    Article  PubMed  Google Scholar 

  47. Andre F, Xia W, Conforti R, Wei Y, Boulet T, Tomasic G, Spielmann M, Zoubir M, Berrada N, Arriagada R, Hortobagyi GN, Hung MC, Pusztai L, Delaloge S, Michiels S, Cristofanilli M (2009) CXCR4 expression in early breast cancer and risk of distant recurrence. Oncologist 14:1182–1188. doi:10.1634/theoncologist.2009-0161

    Article  PubMed  CAS  Google Scholar 

  48. Hiller DJ, Li BD and Chu QD (2010) CXCR4 as a predictive marker for locally advanced breast cancer post-neoadjuvant therapy J Surg Res (1). doi:10.1016/j.jss.2010.04.045

  49. Holm NT, Abreo F, Johnson LW, Li BD, Chu QD (2009) Elevated chemokine receptor CXCR4 expression in primary tumors following neoadjuvant chemotherapy predicts poor outcomes for patients with locally advanced breast cancer (LABC). Breast Cancer Res Treat 113:293–299. doi:10.1007/s10549-008-9921-8

    Article  PubMed  CAS  Google Scholar 

  50. Chu QD, Holm NT, Madumere P, Johnson LW, Abreo F and Li BD (2010) Chemokine receptor CXCR4 overexpression predicts recurrence for hormone receptor-positive, node-negative breast cancer patients. Surgery. doi:10.1016/j.surg.2010.05.016

  51. Zhao Y, Cai Y, Wang YN (2010) RANKL and OPG regulation on bone remodeling. Shanghai Kou Qiang Yi Xue 19:443–446

    PubMed  Google Scholar 

  52. Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473:139–146. doi:10.1016/j.abb.2008.03.018

    Article  PubMed  CAS  Google Scholar 

  53. Kearns AE, Khosla S, Kostenuik PJ (2008) Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 29:155–192. doi:10.1210/er.2007-0014

    Article  PubMed  CAS  Google Scholar 

  54. Gazzerro E, Gangji V, Canalis E (1998) Bone morphogenetic proteins induce the expression of noggin, which limits their activity in cultured rat osteoblasts. J Clin Invest 102:2106–2114. doi:10.1172/JCI3459

    Article  PubMed  CAS  Google Scholar 

  55. Feeley BT, Krenek L, Liu N, Hsu WK, Gamradt SC, Schwarz EM, Huard J, Lieberman JR (2006) Overexpression of noggin inhibits BMP-mediated growth of osteolytic prostate cancer lesions. Bone 38:154–166. doi:10.1016/j.bone.2005.07.015

    Article  PubMed  CAS  Google Scholar 

  56. Feeley BT, Liu NQ, Conduah AH, Krenek L, Roth K, Dougall WC, Huard J, Dubinett S, Lieberman JR (2006) Mixed metastatic lung cancer lesions in bone are inhibited by noggin overexpression and Rank:Fc administration. J Bone Miner Res 21:1571–1580. doi:10.1359/jbmr.060706

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. T.-C. He of The University of Chicago Medical Center for providing the cell lines, vectors, and technical support. The above study was supported by research grants from Chongqing Public Health Bureau (Grant# 2010-2-157, DG) and Chongqing Natural Science Foundation (Grant# 2010BB5100, JYH),China.

Conflict of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Gong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 72 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, D., Huang, J. & Gong, J. Bone morphogenetic protein 4 (BMP4) is required for migration and invasion of breast cancer. Mol Cell Biochem 363, 179–190 (2012). https://doi.org/10.1007/s11010-011-1170-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1170-1

Keywords

Navigation